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Time series is different from traditional 
statistical analysis

 

HIGH-DIMENSIONAL 
100’S OF PARAMETERS 
Oil yield with temperature, pressure. 
Medical, with heart rate, blood 
pressure. Network quality with weather, 
traffic, events.

NOT A NORMAL DISTRIBUTION 
COMPLICATED. MULTIPLE PROCESSORS 
Smart meters weekday vs. weekend. 
Complex manufacturing processes.

 

NON-STATIONARY 
SLIDING WINDOWS OF DATA 
Continuously shifting

DESIRE TO DETECT PATTERN 
Real time data vs. historical data. Input 
keeps changing at rapid pace.

Introduction
Cloudera’s data platform is commonly used by Fortune 2000 companies all over the world, 
for a variety of large scale ETL/data curation, ad-hoc reporting, ML model training, and other 
data-driven, mission critical applications. In this document, we will share how these 
enterprises utilize the same platform and data warehousing technology for high scale, time 
series applications.

A time series data warehouse provides the ability to report and analyze across data 
generated by a large number of data sources that generate data at regular intervals, such as 
sensors, devices, IoT entities, and financial markets. This data can also be queried, in real 
time, on the Cloudera platform in conjunction with other data sources from the organization 
and historical data, or to perform advanced analytics workloads such as statistical modeling 
and machine learning.  

Predictive maintenance 
Large manufacturers collect sensor data from each manufacturing robot at each factory 
floor, to correlate patterns and understand what leads up to specific events, that later 
causes downtime due to need of maintenance. These organizations are looking to 
optimize processes so that spare parts can be available in a timely manner, to avoid 
downtime..

Capacity planning and optimization 
Large utilities and telecom organizations, as well as broadcasting and supply-chain 
dependent organizations, use time series data warehousing to better plan / replan 
manufacturing pipelines and supply chains, to optimize / plan for peak hours (to prevent 
downtimes), or to do better pricing.

Quality optimization 
A frequent add-on use case to the ones above is optimization of quality and quality 
processes, by collecting samples from tests and other sensors. The aim is to prevent the 
significant costs or fines related to having to pull products later in the production pipeline 
(or, in the worst-case scenario, off the market), and to avoid liability and penalty costs.

Yield optimization 
Large pharmaceutical and chemical manufacturers optimize yield by using time series data 
analysis at large scale.

Modern Data Warehousing
REQUIRES ANALYSIS OF TIME SERIES DATA

MEDICAL DATA

OIL YIELDS

SMART METERS

• Automated maintenance and continuous plant uptime 
•Targeted and personalized customer service and promotion
•Automated network utility and cost optimization
•Real-time fraud prevention and threat detection
•Quality and yield optimization
•Continuous operations dashboards
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Requirements 
The architecture outlined in this document describes a reference solution for time series use 
cases on the Cloudera HDP 3 platform. The solution addresses these high level time series 
requirements:

• Extraction of time series measurements from data sources. A measurement is 
generally a single value from a single source (e.g., a sensor) at a single timestamp

• Data sources span a wide variety of interfaces, e.g., files, message queues, IoT 
hubs, REST

• Data sources can span a wide variety of data serializations, e.g. CSV, JSON, 
XML

• The total of all data sources of an application can be a very high rate of 
measurement, e.g., millions of measurements per second

• Enrichment of measurements with additional information, e.g., the device that a sensor 
is attached to. This allows users to query the measurements in more meaningful ways 
than only what was provided by the data source        

• Querying of the measurements by application users
• Measurements should be available across a deep history, from the very latest to 

those far in the past
• Queries over measurements should execute quickly, enabling an interactive and 

exploratory user mindset that encourages driving the most value out of the data
• Queries over measurements should take advantage of existing tooling, such as 

standard business intelligence software
• Measurements should quickly become visible for user queries, e.g. within 30 

seconds since the measurement took place
• Advanced querying of the measurements with statistics and machine learning libraries, 

and widely used languages, such as Python and R
• Automatic handling of updates. These could be intentional, such as data corrections, or 

unintentional, such as duplicates
• Ability to deploy the application either on premises or on a public cloud
• Data secured and governed, including authorization, authentication, auditing, and 

encryption

High-level architecture 
The HDP 3 platform provides a variety of open source components that can be configured 
together to build applications. This reference architecture uses multiple HDP 3 components 
to solve the time series requirements that were described in the previous section:

• Apache NiFi, for ingestion of measurements
• Apache Kafka, for buffered storage of ingested measurements
• Apache Spark, for measurement pre-processing, if required
• Apache Druid, for permanent storage of measurements
• Apache Hive, for user query of measurements
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This architecture is capable of scaling to:

• Ingestion and processing of millions of measurements per second
• Latency in the seconds from real world measurement to user query
• Dozens of concurrent user queries
• Petabytes of available measurements history

The following sections detail four major concerns of the architecture:

• The data model, which describes how the data is stored at rest
• The ingestion flow, which describes how the data is extracted from source systems and 

loaded into the cluster
• The processing job, which describes how the data is transformed prior to user query
• The user queries, which describes how users can ask questions of the data 

Note that the intention of this document is to describe application architecture decisions 
that are specific to time series use cases and does not intend to cover the full breadth of 
CDH application architectures. For deeper consultation on CDH application architectures 
please contact your Cloudera account team or send an email to sales@cloudera.com.

Reference application 
This reference architecture is accompanied by a reference application, available from 
Cloudera, that implements and demonstrates the functionality described by this 
architecture. This reference application can be considered an out-of-the-box proof of 
concept of many of the topics described in this document. Cloudera advises to start a HDP 3 
time series proof of concept with this reference application and make required 
modifications from that point, instead of starting a new application from scratch.
The default AWS cluster configuration of the reference application is capable of ingesting 
1.5 million measurements per second, with spare compute capacity for tens of queries per 
second. Note that query throughput is highly dependent on the specific queries that are 
submitted.

Data model 
The data model is the central construct of a data warehouse architecture, and time series 
applications are no exception. The design of the time series data model will have a major 
impact on the performance, simplicity, and cost-effectiveness of the overall solution.

NiFi/CDF

Kafka

Kudu Impala

CDSW Data
Scientists

SQL
Users

Parquet on 
HDFS, S3, etc

Spark
Streaming

Spark
StreamingData 

Source 1

Data 
Source 2

Data 
Source N

mailto:sales@cloudera.com
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This section outlines a reference data model for a time series data warehouse. This data 
model will need to be customized for each implementation based on application 
requirements.

In this architecture the data is stored in two storage layers:

Druid, which stores new measurements

• Druid, which stores measurements to serve user queries
• Kafka, which buffers measurements that have been ingested but yet to be processed

 

Druid
Druid is a database in the HDP 3 platform that is designed from the ground up for high 
velocity ingestion, aggregation, and querying of time series events. Druid can be configured 
to ingest events directly from Kafka. Druid can also be configured to automatically roll up 
events by a specific time granularity so that many queries that span long periods of time can 
be answered very quickly.

The equivalent of a table in Druid is a “data source”, which contains a single timestamp 
field (__time) along with fields for dimensions and measures. Druid data sources are 
optimized for aggregation queries that return a small number of records, and so are best 
modeled as highly denormalized to remove the need for external joins at query time.

Druid provides a comprehensive REST interface for administrators and end users. Druid does 
provide a native SQL interface for end user queries, however this is limited to simple SQL 
queries over a single Druid data source. Instead, for end user queries, the HDP 3 platform 
provides integration between Hive and Druid so that SQL queries can be sent to Druid from 
the same Hive interface as queries to other storage layers, such as HDFS. Cloudera 
recommends that end users query Druid via the Hive integration.

Modeling

Data source creation by Hive 
The Hive-Druid integration provides the functionality to create a table in Hive that in turn 
creates a data source in Druid. This includes the option to configure data ingestion from 
Kafka.

For example,

CREATE EXTERNAL TABLE telemetry (
    `__time` TIMESTAMP
  , sensor_id STRING
  , value DOUBLE)
STORED BY ‘org.apache.hadoop.hive.druid.DruidStorageHandler’
TBLPROPERTIES (
  “kafka.bootstrap.servers” = “localhost:9092”,
  “kafka.topic” = “telemetry”,
  “druid.query.granularity” = “MINUTE”,
  “druid.segment.granularity” = “DAY”
);
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Using the Hive-Druid integration to create the Druid data source has some important 
limitations:

• Numeric fields are assumed to be measures
• Non-numeric fields are assumed to be dimensions
• Measures can only be rolled up on the sum aggregation

 
If a numeric dimension field is required, then it should be converted to a string before loading 
into Druid. The field can be converted to a string within the NiFi flow that ingests the events.

Measures are generally numeric, so if ingested events contain numeric measures as strings, 
they should be converted to a numeric data type before loading into Druid.

The limitation of only rolling up measures on the sum aggregation will prevent users from 
querying the count of events and any other aggregations that depend on a c ount, such as 
averages. This impact on user queries is discussed further in the Queries section. To include 
the count aggregation the data source must be created first in Druid, as described in the 
next section.

Data source creation by Druid 
An alternative approach to creating Hive-Druid tables/data sources is to first use the Druid 
REST interface to directly create the Druid data source, and to then create a Hive table that 
points to that data source. This provides full flexibility over the data source specification, at 
the expense of some complexity for the developer to need to use the REST interface.

Cloudera recommends to create Druid data sources through Hive if the above stated 
limitations are acceptable, or to otherwise create them directly through Druid.

For example,

DRUID_OVERLORD_HOSTNAME=...
HIVESERVER2_HOSTNAME=...

curl -X POST -H ‘Content-Type: application/json’ -d @supervisor.
json http://${DRUID_OVERLORD_HOSTNAME}:8090/druid/indexer/v1/
supervisor

beeline -u “jdbc:hive2://${HIVESERVER2_HOSTNAME}:10501/
default;transportMode=http;httpPath=cliservice” -e “CREATE 
EXTERNAL TABLE telemetry STORED BY ‘org.apache.hadoop.hive.
druid.DruidStorageHandler’ TBLPROPERTIES (\”druid.datasource\” = 
\”default.telemetry\”)”

Cloudera recommends creating Druid data sources through Hive if the above stated 
limitations are acceptable, or to otherwise create them directly through Druid.

For example,

DRUID_OVERLORD_HOSTNAME=...
HIVESERVER2_HOSTNAME=...

curl -X POST -H ‘Content-Type: application/json’ -d @supervisor.
json http://${DRUID_OVERLORD_HOSTNAME}:8090/druid/indexer/v1/
supervisor
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beeline -u “jdbc:hive2://${HIVESERVER2_HOSTNAME}:10501/
default;transportMode=http;httpPath=cliservice” -e “CREATE 
EXTERNAL TABLE telemetry STORED BY ‘org.apache.hadoop.hive.
druid.DruidStorageHandler’ TBLPROPERTIES (\”druid.datasource\” = 
\”default.telemetry\”)”

A base supervisor JSON file can be generated for your schema by first temporarily creating 
the data source via Hive, then navigating to the Druid Overlord UI and clicking the “payload” 
link for the data source. When the base supervisor JSON file has been copied the temporary 
Hive table can then be dropped. Refer to the Druid documentation for changes that can be 
made to the base supervisor JSON file.

A common configuration to add to a supervisor JSON file is the count, min, and max 
aggregations, so that end users can query for the count of events and for the average, 
minimum, and maximum of event measures. When these aggregations are included in the 
data source the corresponding Hive table will include the corresponding columns as named 
by the name property of each aggregation. These aggregations can be added with JSON 
similar to:

...
    “metricsSpec”: [
      {
        “type”: “doubleSum”,
        “name”: “value”,
        “fieldName”: “value”,
        “expression”: null
      },
      {
        “type”: “count”,
        “name”: “count”
      },
      {
        “type”: “doubleMin”,
        “name”: “value_min”,
        “fieldName”: “value”,
      },
      {
        “type”: “doubleMax”,
        “name”: “value_max”,
        “fieldName”: “value”,
      }
    ],
...

Kafka ingestion 
The Druid data source can be configured to automatically load events from Kafka. Cloudera 
recommends this whenever possible so that external Druid ingestion jobs do not need to be 
developed and maintained.

The Druid-Kafka ingestion can be configured as part of the data source creation, and then 
enabled with a subsequent Hive alter table statement.

For example,

CREATE EXTERNAL TABLE telemetry (`__time` timestamp, sensor_id 
string, value double)

https://druid.apache.org/docs/latest/ingestion/index.html
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STORED BY ‘org.apache.hadoop.hive.druid.DruidStorageHandler’
TBLPROPERTIES (
  “kafka.bootstrap.servers” = “localhost:9092”,
  “kafka.topic” = “telemetry”,
  “druid.kafka.ingestion.taskCount” = “10”,
  ...
);

ALTER TABLE telemetry SET TBLPROPERTIES(“druid.kafka.ingestion” 
= ‘START’);

A Druid-Kafka ingestion job is run as one-to-many tasks on the Druid middle manager 
processes, and is managed by the Druid overlord process.

By default ingestion will only use one task on one middle manager, which can be a 
considerable bottleneck for high velocity ingestion. The Hive-Druid configuration druid.
kafka.ingestion.taskCount (as in the above example) can be used to increase the 
number of ingestion tasks for the Druid data source. Note that running more tasks than there 
are Kafka topic partitions will not improve ingestion performance, because a Kafka topic 
partition can only be consumed by one task at once.

The capacity of tasks that a Druid middle manager can run is set by the middle manager 
configuration druid.worker.capacity, which by default is set to 1. Generally, if the 
middle manager is on a dedicated host, set the worker capacity closer to the number of 
cores on the host. For example, to enable capacity for 60 tasks over 5 middle managers, set 
druid.worker.capacity to 12.

Rollups 
One of the main benefits of using Druid is that it can automatically roll up ingested events to 
a larger time granularity than the raw events, so that aggregations in user queries that span 
over long time ranges can be served with greatly improved performance relative to scanning 
the raw ingested events. For example, if events are ingested at the rate of one per second, 
rolling up events to the per-minute granularity can reduce the size of the data to be 
aggregated in a user query by as much as 60x.

The primary tradeoff to querying a rolled up data source is that the raw events are not 
retained and so questions that require the original time granularity cannot be answered. For 
many time series applications that tradeoff is acceptable and so Druid provides these 
applications with very high performance without the application developers requiring to 
manually implement rollup logic.

In cases where rolled up events are required for the acceptable performance of some 
queries, but raw events are also required for other queries, Cloudera recommends a dual 
ingestion approach where events are ingested into Druid for rollups and into another storage 
layer for raw events, such as HDFS or an object store such as S3 or ADLS. While it is 
technically possible to store raw events in Druid, it is generally not recommended to store 
high scales of raw events in Druid as it is not optimized for returning very large result sets 
from user queries, which would be necessary for many queries that require raw events (e.g. 
machine learning algorithms). Dual ingestion can be enabled through an additional sink in 
the NiFi flow. 

Automated rollups can be configured in the Druid data source definition. The granularity at 
which Druid segments the data source can also be set in a similar way.
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For example,

CREATE EXTERNAL TABLE telemetry (`__time` timestamp, sensor_id 
string, value double)
STORED BY ‘org.apache.hadoop.hive.druid.DruidStorageHandler’
TBLPROPERTIES (
  ...
  “druid.query.granularity” = “MINUTE”,
  “druid.segment.granularity” = “DAY”
);

In this example the measures of the events of each minute of the __time field will be 
automatically aggregated for each combination of dimension values. 

Ingestion serialization format 
By default, Hive-Druid assumes that events being ingested are serialized as JSON objects. If 
the events in Kafka are serialized with delimited text (e.g. CSV) or Avro then this can be set 
with the Hive-Druid druid.parseSpec.format configuration. The serialization 
configurations are indirectly documented in the Hive-Druid code.

If ingested events are serialized in another format then they should be converted by NiFi to a 
supported serialization, ideally Avro for best performance.

For example, for Avro 

CREATE EXTERNAL TABLE telemetry (
  `__time` TIMESTAMP,
  sensor_id STRING,
  value DOUBLE,
  plant STRING,
  machine STRING,
  sensor_type STRING
)
STORED BY ‘org.apache.hadoop.hive.druid.DruidStorageHandler’
TBLPROPERTIES (
  ...
  “druid.parseSpec.format” = “avro”,
  “avro.schema.literal” = 
“{\”type\”:\”record\”,\”name\”:\” 
telemetry\”,\”fields\”:[{\”name\”:\”sensor_id\”,\”type\”:\”string\”
},{\”name\”:\”__time\”,\”type\”:\”long\”},{\”name\”:\”value\”,\”-
type\”:\”double\”},{\”name\”:\”sensor_type\”,\”type\”:[\”null\”,\”stri
ng\”]},{\”name\”:\”plant\”,\”type\”:[\”null\”,\”string\”]},{\”name\”:\
”machine\”,\”type\”:[\”null\”,\”string\”]}]}”
);

Kafka 
Kafka should be used as the buffer between data ingestion by NiFi and data loading by Druid. 
The time series measurements that are ingested by NiFi should be serialized in a common 
format and written to a Kafka measurements topic.

Measurements topic 
The measurements topic holds time series measurements ingested by NiFi, but not yet 
loaded by Druid. One message in the topic should represent one measurement.

 

https://github.com/apache/hive/blob/master/druid-handler/src/java/org/apache/hadoop/hive/druid/conf/DruidConstants.java
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Topic design 
The number of topic partitions is an important factor in message throughput. A reasonable 
initial value is one partition per 10,000 measurements per second. For example, for an 
application that ingests 500,000 measurements per second, start with a topic of 50 
partitions. Further tuning of the partition count may be required after initial performance 
testing of the developed application, but ideally before entering production. The topic 
should have a replication factor of 3 for data durability and availability in failure 
scenarios.

Message serialization 
The measurement messages in the topic should be serialized with Apache Avro, which is a 
compact binary serialization that is well supported in the Cloudera platform. Avro allows the 
schema of the messages to evolve over time without necessarily breaking compatibility with 
earlier messages. The use of the Schema Registry component in Cloudera Stream 
Processing can assist with managing this schema evolution, including supporting the 
messages to be written without each embedding the full schema. The NiFi ingestion flow 
can be configured to write messages to Kafka in Avro format, including integration with the 
schema registry.
It is possible for the measurements messages to be serialized with other formats, such as 
JSON; however these generally take up more disk space, are slower for Druid to parse, and 
may not support schema evolution.

Data ingestion 
Ingestion is the extract of data from source systems and the load of that data into the HDP 3 
platform. From data warehousing terminology this is the “E” and the “L” of ETL, or ELT.
NiFi is the recommended data integration component, which is provided by Cloudera 
Data Flow (CDF) for HDP 3. NiFi is very well suited to high velocity ingest of time 
series data.

The source systems that time series data is ingested from can take many different forms and 

• Raw TCP
• HTTP, e.g. REST
• Historians
• Upstream collectors, e.g. Azure IoT Hub
• Relational databases
• Flat files
• Custom format files 

NiFi has the ability to read all of these source systems and interfaces, including extensibility 
for data formats that NiFi does not currently support. Consult the NiFi documentation to find 
the processors that match your source system interfaces.

NiFi should load the extracted data into the measurements topic in Kafka. Each message in 
the measurement topic should represent one time series measurement. All ingested 
measurements should be serialized as Avro records for the Kafka messages.

If required, NiFi can also be used to pre-process measurements before loading them into 
Kafka. This can include simple transformations such as data type conversion and field 
renames, or more complex transformations such as enrichment via lookups.

In some cases, the complexity of a required transformation is beyond what is expressable in 
NiFi, such as a join or window function. In these cases, Cloudera recommends to use the 
stream processing engine Apache Spark to run these transformations between the data 
being ingested by NiFi and the data being loaded into Druid. Kafka can be used as a buffer 
between these components, just as it is used in this architecture document as a buffer 
between NiFi and Druid.

http://nifi.apache.org/docs/nifi-docs/html/getting-started.html#what-processors-are-available
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User queries 
With the measurements loaded into Druid the users can immediately query them with 
Hive. This can be done using hand-written SQL in the Data Analytics Studio (DAS) user 
interface for HDP 3, or through third-party business intelligence tools that support JDBC 
or ODBC data sources. Custom SQL can be useful for exploratory analytics, and BI tools 
can be useful for live monitoring and dashboarding.

In addition to time series data warehousing, data scientists can access the same data 
through the Cloudera Data Science Workbench tool. This enables distributed machine 
learning algorithms to be executed over the same time series data using Spark.
This section provides some example SQL queries that users might run to ask questions of 
the time series application.

Raw 
In this context “raw” data refers to the individual records stored within Druid. If the 
measurements have not been rolled up on ingestion, then these will be the individual 
measurements.
If the measurements have been rolled up on ingestion, for example from per-second 
events to the one-minute granularity, then these will be the partial aggregation results 
(i.e. rollups) stored in Druid. These records are a slice of the time and dimensions fields 
of the measurements. It is not guaranteed that Druid will always store one rollup record 
per slice of the time and the dimensions, nor that Druid will always maintain the same 
number of rollup records per slice of time and dimensions. In general, this means that is 
it not particularly useful to select raw records from rollup tables, and instead queries that 
aggregate by a slice of time and/or dimensions should be submitted instead.
For example, within a relative window of time, note that sometimes there are multiple 
records per timestamp: 

SELECT `__time`, count, value
FROM telemetry
WHERE sensor_id = 100
AND `__time` >= CURRENT_TIMESTAMP() - INTERVAL 10 MINUTES;

+----------------------------+--------+----------------------+
|           __time           | count  |        value         |
+----------------------------+--------+----------------------+
| 2019-10-22 14:46:00.0 UTC  | 60     | -16219.843261338903  |
| 2019-10-22 14:47:00.0 UTC  | 1      | -6.846895856402227   |
| 2019-10-22 14:47:00.0 UTC  | 59     | -14912.613028755055  |
| 2019-10-22 14:48:00.0 UTC  | 60     | -17470.1292797956    |
| 2019-10-22 14:49:00.0 UTC  | 1      | -470.02321050059106  |
| 2019-10-22 14:49:00.0 UTC  | 59     | -19866.89021500123   |
| 2019-10-22 14:50:00.0 UTC  | 60     | -19556.180216432906  |
| 2019-10-22 14:51:00.0 UTC  | 1      | -299.80085607997455  |
| 2019-10-22 14:51:00.0 UTC  | 59     | -15906.440247964943  |
| 2019-10-22 14:52:00.0 UTC  | 60     | -14923.916427317667  |
| 2019-10-22 14:53:00.0 UTC  | 1      | -112.41589126252131  |
| 2019-10-22 14:53:00.0 UTC  | 59     | -17371.277289287562  |
| 2019-10-22 14:54:00.0 UTC  | 60     | -20344.369541141623  |
| 2019-10-22 14:55:00.0 UTC  | 1      | -586.1111970069903   |
| 2019-10-22 14:55:00.0 UTC  | 32     | -6269.855211856371   |
+----------------------------+--------+----------------------+
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Or within a specific range of time:

SELECT `__time`, count, value
FROM telemetry
WHERE sensor_id = 100
AND `__time` BETWEEN ‘2019-10-22 14:50:00’ AND ‘2019-10-22 
14:52:00’;

+----------------------------+--------+----------------------+
|           __time           | count  |        value         |
+----------------------------+--------+----------------------+
| 2019-10-22 14:50:00.0 UTC  | 60     | -19556.180216432906  |
| 2019-10-22 14:51:00.0 UTC  | 1      | -299.80085607997455  |
| 2019-10-22 14:51:00.0 UTC  | 59     | -15906.440247964943  |
| 2019-10-22 14:52:00.0 UTC  | 60     | -14923.916427317667  |
+----------------------------+--------+----------------------+ 

Downsamples 
Downsampling involves aggregating measurements to a larger time granularity so that 
values can be determined for wider timespans than what is already rolled up in the table. 
Within Druid these are known as ‘timeseries’ queries.

Hive provides “floor” functions to round down timestamps to the nearest granularity 
timestamp, e.g. for the floor minute function, from ‘2019-01-01 12:34:56’ to ‘2019-01-
01 12:34:00’.

For example, to downsample to a per hour granularity:

    SELECT 
    FLOOR_HOUR(`__time`) `__time`
  , SUM(count) count
  , SUM(value) value
FROM telemetry
WHERE sensor_id = 100
GROUP BY FLOOR_HOUR(`__time`);
+----------------------------+--------+----------------------+
|           __time           | count  |        value         |
+----------------------------+--------+----------------------+
| 2019-10-22 14:00:00.0 UTC  | 894    | -262296.3874278831   |
| 2019-10-22 15:00:00.0 UTC  | 3600   | -1062112.2920872918  |
| 2019-10-22 16:00:00.0 UTC  | 3600   | -1062137.711899869   |
| 2019-10-22 17:00:00.0 UTC  | 3599   | -1061534.043815015   |
| 2019-10-22 18:00:00.0 UTC  | 1954   | -577525.0118555583   |
+----------------------------+--------+----------------------+

Or to downsample to a per 15-minute granularity:

SELECT
    CAST(FLOOR_MINUTE(`__time`) AS TIMESTAMP) -
    INTERVAL (EXTRACT(minute FROM `__time`) % 15) MINUTES
    AS `__time`
  , SUM(count) count
  , SUM(value) value
FROM telemetry
WHERE sensor_id = 100
GROUP BY CAST(FLOOR_MINUTE(`__time`) AS TIMESTAMP) -
  INTERVAL (EXTRACT(minute FROM `__time`) % 15) MINUTES
ORDER BY `__time`;
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+------------------------+--------+----------------------+
|         __time         | count  |        value         |
+------------------------+--------+----------------------+
| 2019-10-22 14:45:00.0  | 894    | -262296.3874278831   |
| 2019-10-22 15:00:00.0  | 900    | -265527.93449713575  |
| 2019-10-22 15:15:00.0  | 900    | -265535.0565255714   |
| 2019-10-22 15:30:00.0  | 900    | -265525.1983720285   |
| 2019-10-22 15:45:00.0  | 900    | -265524.1026925563   |
| 2019-10-22 16:00:00.0  | 900    | -265531.57272412465  |
| 2019-10-22 16:15:00.0  | 900    | -265531.25440185587  |
| 2019-10-22 16:30:00.0  | 900    | -265538.47855463775  |
| 2019-10-22 16:45:00.0  | 900    | -265536.4062192506   |
| 2019-10-22 17:00:00.0  | 899    | -264938.3456768413   |
| 2019-10-22 17:15:00.0  | 900    | -265532.40692064306  |
| 2019-10-22 17:30:00.0  | 900    | -265534.8937905999   |
| 2019-10-22 17:45:00.0  | 900    | -265528.3974269307   |
| 2019-10-22 18:00:00.0  | 900    | -265534.2945895997   |
| 2019-10-22 18:15:00.0  | 783    | -227960.73054807374  |
+------------------------+--------+----------------------+

These queries can be wrapped in views to simplify user queries. Multiple views can be 
created for different granularities, such as one per second, one per minute, and one per hour. 

CREATE VIEW telemetry_hour AS
SELECT 
    FLOOR_HOUR(`__time`) `__time`
  , sensor_id
  , SUM(count) count
  , SUM(value) value
FROM telemetry
GROUP BY FLOOR_HOUR(`__time`), sensor_id;

The view can then be queried as:

SELECT `__time`, count, value
FROM telemetry_hour
WHERE sensor_id = 100
ORDER BY `__time`;
+----------------------------+--------+----------------------+
|           __time           | count  |        value         |
+----------------------------+--------+----------------------+
| 2019-10-22 14:00:00.0 UTC  | 894    | -262296.3874278831   |
| 2019-10-22 15:00:00.0 UTC  | 3600   | -1062112.2920872918  |
| 2019-10-22 16:00:00.0 UTC  | 3600   | -1062137.711899869   |
| 2019-10-22 17:00:00.0 UTC  | 3599   | -1061534.043815015   |
| 2019-10-22 18:00:00.0 UTC  | 2118   | -625490.7404606077   |
+----------------------------+--------+----------------------+

Pivot/transpose 
The above examples provide the multiple metrics per timestamp on separate records. 
A pivot, otherwise known as a transpose, can be used where multiple metrics per 
timestamp are required on the same record.
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Hive does not currently provide a pivot function, but it can be implemented with this 
syntax (assuming we have a view telemetry_hour that downsamples measurements 
per hour, as described in the previous section):

    SELECT
    FLOOR_HOUR(`__time`) `__time`
  , MAX(CASE WHEN sensor_type = ‘temperature’ THEN value END) 
temperature
  , MAX(CASE WHEN sensor_type = ‘pressure’ THEN value END) 
pressure
FROM telemetry
WHERE sensor_id IN (100, 101)
AND `__time` >= CURRENT_TIMESTAMP() - INTERVAL 4 HOURS
GROUP BY FLOOR_HOUR(`__time`)
ORDER BY FLOOR_HOUR(`__time`);
+-----------------------+-----------------------+--------------------+
|        __time         |      temperature      |      pressure      |
+-----------------------+-----------------------+--------------------+
| 2019-10-22 14:00:00.0 | -14919.459924611458   | 1901.2905602971227 |
| 2019-10-22 15:00:00.0 | -6035.789051408976    | 3362.989233184454  |
| 2019-10-22 16:00:00.0 | -5961.867724867079    | 3358.183901721163  |
| 2019-10-22 17:00:00.0 | -3.7921024546802755   | 3353.33377443314   |
| 2019-10-22 18:00:00.0 | -0.22397884804610158  | 3322.994063408674  |
+-----------------------+-----------------------+--------------------+

Where a set of metrics is commonly pivoted together then a view could be created for that 
pivot query:

CREATE VIEW probe_metrics AS
SELECT
    time
  , plant
  , machine
  , MAX(CASE WHEN sensor_type = ‘pressure’ THEN value END) 
pressure
  , MAX(CASE WHEN sensor_type = ‘brightness’ THEN value END) 
brightness
FROM downsampled_1s
GROUP BY time, plant, machine;

Users could then query for probe metrics per timestamp with:

SELECT time, pressure, brightness
FROM probe_metrics
WHERE machine = 705
AND time >= NOW() - INTERVAL 1 HOUR
ORDER BY time;

+---------------------+-------------------+--------------------+
| time                | pressure          | brightness         |
+---------------------+-------------------+--------------------+
| 2019-06-03 00:48:24 | 46.31959579101573 | -399.1159619067209 |
| 2019-06-03 00:48:25 | 47.17996759211917 | -399.9728049675076 |
| 2019-06-03 00:48:26 | 47.73523223287668 | -399.6272832668245 |
| 2019-06-03 00:48:28 | 47.92830080609275 | -395.3348250960566 |
| 2019-06-03 00:48:29 | 47.56588908407019 | -391.3973229393663 |
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| 2019-06-03 00:48:30 | 46.89793899373325 | -386.2763078513929 |
| 2019-06-03 00:48:31 | 45.92519684787266 | -379.9830358708207 |
| 2019-06-03 00:48:32 | 44.64874896045262 | -372.5313384227952 |
| 2019-06-03 00:48:33 | 43.07002057534766 | -363.9376006885211 |
| 2019-06-03 00:48:34 | 41.19077563451083 | -354.2207113810819 |
...

Aggregations 
Hive supports many common aggregate functions, however it does not always translate 
these into queries on Druid in a way that reflects the intention of the user. The following 
sub-sections describe how to derive the intended aggregation results. 
 
Sums 
The SUM function is understood correctly by Hive to be pushed down to Druid, and so it will 
automatically generate the correct results.

For example,

SELECT SUM(value) sum 
FROM telemetry 
WHERE `__time` >= CURRENT_TIMESTAMP() - INTERVAL 1 DAY 
AND sensor_id = 100;
+----------------------+ 
|         sum          |
+----------------------+
| -157826.08752537577  |
+----------------------+

Counts and averages 
For Hive-Druid tables the Hive COUNT and AVG functions will use the count of the multiple 
partial aggregation records of a single time/dimension slice, instead of using the count 
column created by the count aggregation in the Druid data source. Because there are an 
arbitrary number of partial aggregation records for a single time/dimension slice, it is not 
meaningful to use the count of those records for query results.
Instead, to correctly derive the count and average aggregations for a Druid-backed table 
the SUM function must be used on the count column.

For example, to retrieve the average value and the count of measurements of a metric over the 
previous day, and to also demonstrate the unintended way to aggregate values on Druid tables:

SELECT
    SUM(value) / SUM(count) avg
  , SUM(count) count
  , AVG(value) wrong_avg
  , COUNT(*) wrong_count
FROM telemetry
WHERE `__time` >= CURRENT_TIMESTAMP() - INTERVAL 1 DAY
AND sensor_id = 100;
+---------------------+--------+----------------------+--------------+
|         avg         | count  |      wrong_avg       | wrong_count  |
+---------------------+--------+----------------------+--------------+
| -294.97244278095854 | 15846  | -16753.166051279815  | 279          |
+---------------------+--------+----------------------+--------------+

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-Built-inAggregateFunctions(UDAF)
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Minimums and maximums 
By default, a Hive-Druid table will not maintain the minimum or maximum values within each 
rollup. This means that when using the Hive MIN or MAX function on a measure the result will be 
the minimum and maximum of the summed measures for each slice of time/dimensions, which 
generally is not what is intended when selecting a minimum or maximum.

Instead, to correct derive the minimum and maximum of a measure for a Druid-backed table the 
Druid data source must be created with minimum and maximum aggregators. These are included 
in the same way as the count aggregator. See the Druid documentation for more information on 
these aggregators.

With the minimum and maximum aggregators included in the Hive-Druid table the minimums 
and maximums can be derived by using the Hive MIN and MAX function over the min and max 
columns created by the aggregators.

For example, where the minimum and maximum aggregators are named value_min and 
value_max:

SELECT
    MIN(value_min) min
  , MAX(value_max) max
FROM telemetry
WHERE `__time` >= CURRENT_TIMESTAMP() - INTERVAL 1 DAY
AND sensor_id = 100;
+---------------------+---------------------+
|         min         |         max         |
+---------------------+---------------------+
| -699.9823943886912  | 1023.9863627726648  |
+---------------------+---------------------+
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