
WHITE PAPER

TIME SERIES
DATA WAREHOUSE
A reference architecture utilizing a modern
data warehouse, based on Cloudera HDP 3

TIME
SERIES

DATA
ANALYSIS

WHITE PAPER

2 Time Series Data Warehouse

Time series is different from traditional
statistical analysis

HIGH-DIMENSIONAL
100’S OF PARAMETERS
Oil yield with temperature, pressure.
Medical, with heart rate, blood
pressure. Network quality with weather,
traffic, events.

NOT A NORMAL DISTRIBUTION
COMPLICATED. MULTIPLE PROCESSORS
Smart meters weekday vs. weekend.
Complex manufacturing processes.

NON-STATIONARY
SLIDING WINDOWS OF DATA
Continuously shifting

DESIRE TO DETECT PATTERN
Real time data vs. historical data. Input
keeps changing at rapid pace.

Introduction
Cloudera’s data platform is commonly used by Fortune 2000 companies all over the world,
for a variety of large scale ETL/data curation, ad-hoc reporting, ML model training, and other
data-driven, mission critical applications. In this document, we will share how these
enterprises utilize the same platform and data warehousing technology for high scale, time
series applications.

A time series data warehouse provides the ability to report and analyze across data
generated by a large number of data sources that generate data at regular intervals, such as
sensors, devices, IoT entities, and financial markets. This data can also be queried, in real
time, on the Cloudera platform in conjunction with other data sources from the organization
and historical data, or to perform advanced analytics workloads such as statistical modeling
and machine learning.

Predictive maintenance
Large manufacturers collect sensor data from each manufacturing robot at each factory
floor, to correlate patterns and understand what leads up to specific events, that later
causes downtime due to need of maintenance. These organizations are looking to
optimize processes so that spare parts can be available in a timely manner, to avoid
downtime..

Capacity planning and optimization
Large utilities and telecom organizations, as well as broadcasting and supply-chain
dependent organizations, use time series data warehousing to better plan / replan
manufacturing pipelines and supply chains, to optimize / plan for peak hours (to prevent
downtimes), or to do better pricing.

Quality optimization
A frequent add-on use case to the ones above is optimization of quality and quality
processes, by collecting samples from tests and other sensors. The aim is to prevent the
significant costs or fines related to having to pull products later in the production pipeline
(or, in the worst-case scenario, off the market), and to avoid liability and penalty costs.

Yield optimization
Large pharmaceutical and chemical manufacturers optimize yield by using time series data
analysis at large scale.

Modern Data Warehousing
REQUIRES ANALYSIS OF TIME SERIES DATA

MEDICAL DATA

OIL YIELDS

SMART METERS

• Automated maintenance and continuous plant uptime
•Targeted and personalized customer service and promotion
•Automated network utility and cost optimization
•Real-time fraud prevention and threat detection
•Quality and yield optimization
•Continuous operations dashboards

WHITE PAPER

3 Time Series Data Warehouse

Table of Contents

Introduction 2

Requirements 4

High-level architecture 4

Reference Application 5

Data model 5

 Druid 6

 Modeling 6

 Data source creation by Hive 6

 Data source creation by Druid 7

 Kafka ingestion 8

 Rollups 9

 Ingestion serialization format 10

 Kafka 10

 Measurements topic 10

 Topic design 10

 Message serialization 11

Data ingestion 11

User queries 12

 Raw 12

 Downsamples 13

 Pivot/transpose 14

 Aggregations 16

 Sums 16

 Counts and averages 16

 Minimums and maximums 17

WHITE PAPER

4 Time Series Data Warehouse

Requirements
The architecture outlined in this document describes a reference solution for time series use
cases on the Cloudera HDP 3 platform. The solution addresses these high level time series
requirements:

• Extraction of time series measurements from data sources. A measurement is
generally a single value from a single source (e.g., a sensor) at a single timestamp

• Data sources span a wide variety of interfaces, e.g., files, message queues, IoT
hubs, REST

• Data sources can span a wide variety of data serializations, e.g. CSV, JSON,
XML

• The total of all data sources of an application can be a very high rate of
measurement, e.g., millions of measurements per second

• Enrichment of measurements with additional information, e.g., the device that a sensor
is attached to. This allows users to query the measurements in more meaningful ways
than only what was provided by the data source

• Querying of the measurements by application users
• Measurements should be available across a deep history, from the very latest to

those far in the past
• Queries over measurements should execute quickly, enabling an interactive and

exploratory user mindset that encourages driving the most value out of the data
• Queries over measurements should take advantage of existing tooling, such as

standard business intelligence software
• Measurements should quickly become visible for user queries, e.g. within 30

seconds since the measurement took place
• Advanced querying of the measurements with statistics and machine learning libraries,

and widely used languages, such as Python and R
• Automatic handling of updates. These could be intentional, such as data corrections, or

unintentional, such as duplicates
• Ability to deploy the application either on premises or on a public cloud
• Data secured and governed, including authorization, authentication, auditing, and

encryption

High-level architecture
The HDP 3 platform provides a variety of open source components that can be configured
together to build applications. This reference architecture uses multiple HDP 3 components
to solve the time series requirements that were described in the previous section:

• Apache NiFi, for ingestion of measurements
• Apache Kafka, for buffered storage of ingested measurements
• Apache Spark, for measurement pre-processing, if required
• Apache Druid, for permanent storage of measurements
• Apache Hive, for user query of measurements

WHITE PAPER

5 Time Series Data Warehouse

This architecture is capable of scaling to:

• Ingestion and processing of millions of measurements per second
• Latency in the seconds from real world measurement to user query
• Dozens of concurrent user queries
• Petabytes of available measurements history

The following sections detail four major concerns of the architecture:

• The data model, which describes how the data is stored at rest
• The ingestion flow, which describes how the data is extracted from source systems and

loaded into the cluster
• The processing job, which describes how the data is transformed prior to user query
• The user queries, which describes how users can ask questions of the data

Note that the intention of this document is to describe application architecture decisions
that are specific to time series use cases and does not intend to cover the full breadth of
CDH application architectures. For deeper consultation on CDH application architectures
please contact your Cloudera account team or send an email to sales@cloudera.com.

Reference application
This reference architecture is accompanied by a reference application, available from
Cloudera, that implements and demonstrates the functionality described by this
architecture. This reference application can be considered an out-of-the-box proof of
concept of many of the topics described in this document. Cloudera advises to start a HDP 3
time series proof of concept with this reference application and make required
modifications from that point, instead of starting a new application from scratch.
The default AWS cluster configuration of the reference application is capable of ingesting
1.5 million measurements per second, with spare compute capacity for tens of queries per
second. Note that query throughput is highly dependent on the specific queries that are
submitted.

Data model
The data model is the central construct of a data warehouse architecture, and time series
applications are no exception. The design of the time series data model will have a major
impact on the performance, simplicity, and cost-effectiveness of the overall solution.

NiFi/CDF

Kafka

Kudu Impala

CDSW Data
Scientists

SQL
Users

Parquet on
HDFS, S3, etc

Spark
Streaming

Spark
StreamingData

Source 1

Data
Source 2

Data
Source N

mailto:sales@cloudera.com

WHITE PAPER

6 Time Series Data Warehouse

This section outlines a reference data model for a time series data warehouse. This data
model will need to be customized for each implementation based on application
requirements.

In this architecture the data is stored in two storage layers:

Druid, which stores new measurements

• Druid, which stores measurements to serve user queries
• Kafka, which buffers measurements that have been ingested but yet to be processed

Druid
Druid is a database in the HDP 3 platform that is designed from the ground up for high
velocity ingestion, aggregation, and querying of time series events. Druid can be configured
to ingest events directly from Kafka. Druid can also be configured to automatically roll up
events by a specific time granularity so that many queries that span long periods of time can
be answered very quickly.

The equivalent of a table in Druid is a “data source”, which contains a single timestamp
field (__time) along with fields for dimensions and measures. Druid data sources are
optimized for aggregation queries that return a small number of records, and so are best
modeled as highly denormalized to remove the need for external joins at query time.

Druid provides a comprehensive REST interface for administrators and end users. Druid does
provide a native SQL interface for end user queries, however this is limited to simple SQL
queries over a single Druid data source. Instead, for end user queries, the HDP 3 platform
provides integration between Hive and Druid so that SQL queries can be sent to Druid from
the same Hive interface as queries to other storage layers, such as HDFS. Cloudera
recommends that end users query Druid via the Hive integration.

Modeling

Data source creation by Hive
The Hive-Druid integration provides the functionality to create a table in Hive that in turn
creates a data source in Druid. This includes the option to configure data ingestion from
Kafka.

For example,

CREATE EXTERNAL TABLE telemetry (
 `__time` TIMESTAMP
 , sensor_id STRING
 , value DOUBLE)
STORED BY ‘org.apache.hadoop.hive.druid.DruidStorageHandler’
TBLPROPERTIES (
 “kafka.bootstrap.servers” = “localhost:9092”,
 “kafka.topic” = “telemetry”,
 “druid.query.granularity” = “MINUTE”,
 “druid.segment.granularity” = “DAY”
);

WHITE PAPER

7 Time Series Data Warehouse

Using the Hive-Druid integration to create the Druid data source has some important
limitations:

• Numeric fields are assumed to be measures
• Non-numeric fields are assumed to be dimensions
• Measures can only be rolled up on the sum aggregation

If a numeric dimension field is required, then it should be converted to a string before loading
into Druid. The field can be converted to a string within the NiFi flow that ingests the events.

Measures are generally numeric, so if ingested events contain numeric measures as strings,
they should be converted to a numeric data type before loading into Druid.

The limitation of only rolling up measures on the sum aggregation will prevent users from
querying the count of events and any other aggregations that depend on a c ount, such as
averages. This impact on user queries is discussed further in the Queries section. To include
the count aggregation the data source must be created first in Druid, as described in the
next section.

Data source creation by Druid
An alternative approach to creating Hive-Druid tables/data sources is to first use the Druid
REST interface to directly create the Druid data source, and to then create a Hive table that
points to that data source. This provides full flexibility over the data source specification, at
the expense of some complexity for the developer to need to use the REST interface.

Cloudera recommends to create Druid data sources through Hive if the above stated
limitations are acceptable, or to otherwise create them directly through Druid.

For example,

DRUID_OVERLORD_HOSTNAME=...
HIVESERVER2_HOSTNAME=...

curl -X POST -H ‘Content-Type: application/json’ -d @supervisor.
json http://${DRUID_OVERLORD_HOSTNAME}:8090/druid/indexer/v1/
supervisor

beeline -u “jdbc:hive2://${HIVESERVER2_HOSTNAME}:10501/
default;transportMode=http;httpPath=cliservice” -e “CREATE
EXTERNAL TABLE telemetry STORED BY ‘org.apache.hadoop.hive.
druid.DruidStorageHandler’ TBLPROPERTIES (\”druid.datasource\” =
\”default.telemetry\”)”

Cloudera recommends creating Druid data sources through Hive if the above stated
limitations are acceptable, or to otherwise create them directly through Druid.

For example,

DRUID_OVERLORD_HOSTNAME=...
HIVESERVER2_HOSTNAME=...

curl -X POST -H ‘Content-Type: application/json’ -d @supervisor.
json http://${DRUID_OVERLORD_HOSTNAME}:8090/druid/indexer/v1/
supervisor

WHITE PAPER

8 Time Series Data Warehouse

beeline -u “jdbc:hive2://${HIVESERVER2_HOSTNAME}:10501/
default;transportMode=http;httpPath=cliservice” -e “CREATE
EXTERNAL TABLE telemetry STORED BY ‘org.apache.hadoop.hive.
druid.DruidStorageHandler’ TBLPROPERTIES (\”druid.datasource\” =
\”default.telemetry\”)”

A base supervisor JSON file can be generated for your schema by first temporarily creating
the data source via Hive, then navigating to the Druid Overlord UI and clicking the “payload”
link for the data source. When the base supervisor JSON file has been copied the temporary
Hive table can then be dropped. Refer to the Druid documentation for changes that can be
made to the base supervisor JSON file.

A common configuration to add to a supervisor JSON file is the count, min, and max
aggregations, so that end users can query for the count of events and for the average,
minimum, and maximum of event measures. When these aggregations are included in the
data source the corresponding Hive table will include the corresponding columns as named
by the name property of each aggregation. These aggregations can be added with JSON
similar to:

...
 “metricsSpec”: [
 {
 “type”: “doubleSum”,
 “name”: “value”,
 “fieldName”: “value”,
 “expression”: null
 },
 {
 “type”: “count”,
 “name”: “count”
 },
 {
 “type”: “doubleMin”,
 “name”: “value_min”,
 “fieldName”: “value”,
 },
 {
 “type”: “doubleMax”,
 “name”: “value_max”,
 “fieldName”: “value”,
 }
],
...

Kafka ingestion
The Druid data source can be configured to automatically load events from Kafka. Cloudera
recommends this whenever possible so that external Druid ingestion jobs do not need to be
developed and maintained.

The Druid-Kafka ingestion can be configured as part of the data source creation, and then
enabled with a subsequent Hive alter table statement.

For example,

CREATE EXTERNAL TABLE telemetry (`__time` timestamp, sensor_id
string, value double)

https://druid.apache.org/docs/latest/ingestion/index.html

WHITE PAPER

9 Time Series Data Warehouse

STORED BY ‘org.apache.hadoop.hive.druid.DruidStorageHandler’
TBLPROPERTIES (
 “kafka.bootstrap.servers” = “localhost:9092”,
 “kafka.topic” = “telemetry”,
 “druid.kafka.ingestion.taskCount” = “10”,
 ...
);

ALTER TABLE telemetry SET TBLPROPERTIES(“druid.kafka.ingestion”
= ‘START’);

A Druid-Kafka ingestion job is run as one-to-many tasks on the Druid middle manager
processes, and is managed by the Druid overlord process.

By default ingestion will only use one task on one middle manager, which can be a
considerable bottleneck for high velocity ingestion. The Hive-Druid configuration druid.
kafka.ingestion.taskCount (as in the above example) can be used to increase the
number of ingestion tasks for the Druid data source. Note that running more tasks than there
are Kafka topic partitions will not improve ingestion performance, because a Kafka topic
partition can only be consumed by one task at once.

The capacity of tasks that a Druid middle manager can run is set by the middle manager
configuration druid.worker.capacity, which by default is set to 1. Generally, if the
middle manager is on a dedicated host, set the worker capacity closer to the number of
cores on the host. For example, to enable capacity for 60 tasks over 5 middle managers, set
druid.worker.capacity to 12.

Rollups
One of the main benefits of using Druid is that it can automatically roll up ingested events to
a larger time granularity than the raw events, so that aggregations in user queries that span
over long time ranges can be served with greatly improved performance relative to scanning
the raw ingested events. For example, if events are ingested at the rate of one per second,
rolling up events to the per-minute granularity can reduce the size of the data to be
aggregated in a user query by as much as 60x.

The primary tradeoff to querying a rolled up data source is that the raw events are not
retained and so questions that require the original time granularity cannot be answered. For
many time series applications that tradeoff is acceptable and so Druid provides these
applications with very high performance without the application developers requiring to
manually implement rollup logic.

In cases where rolled up events are required for the acceptable performance of some
queries, but raw events are also required for other queries, Cloudera recommends a dual
ingestion approach where events are ingested into Druid for rollups and into another storage
layer for raw events, such as HDFS or an object store such as S3 or ADLS. While it is
technically possible to store raw events in Druid, it is generally not recommended to store
high scales of raw events in Druid as it is not optimized for returning very large result sets
from user queries, which would be necessary for many queries that require raw events (e.g.
machine learning algorithms). Dual ingestion can be enabled through an additional sink in
the NiFi flow.

Automated rollups can be configured in the Druid data source definition. The granularity at
which Druid segments the data source can also be set in a similar way.

WHITE PAPER

10 Time Series Data Warehouse

For example,

CREATE EXTERNAL TABLE telemetry (`__time` timestamp, sensor_id
string, value double)
STORED BY ‘org.apache.hadoop.hive.druid.DruidStorageHandler’
TBLPROPERTIES (
 ...
 “druid.query.granularity” = “MINUTE”,
 “druid.segment.granularity” = “DAY”
);

In this example the measures of the events of each minute of the __time field will be
automatically aggregated for each combination of dimension values.

Ingestion serialization format
By default, Hive-Druid assumes that events being ingested are serialized as JSON objects. If
the events in Kafka are serialized with delimited text (e.g. CSV) or Avro then this can be set
with the Hive-Druid druid.parseSpec.format configuration. The serialization
configurations are indirectly documented in the Hive-Druid code.

If ingested events are serialized in another format then they should be converted by NiFi to a
supported serialization, ideally Avro for best performance.

For example, for Avro

CREATE EXTERNAL TABLE telemetry (
 `__time` TIMESTAMP,
 sensor_id STRING,
 value DOUBLE,
 plant STRING,
 machine STRING,
 sensor_type STRING
)
STORED BY ‘org.apache.hadoop.hive.druid.DruidStorageHandler’
TBLPROPERTIES (
 ...
 “druid.parseSpec.format” = “avro”,
 “avro.schema.literal” =
“{\”type\”:\”record\”,\”name\”:\”
telemetry\”,\”fields\”:[{\”name\”:\”sensor_id\”,\”type\”:\”string\”
},{\”name\”:\”__time\”,\”type\”:\”long\”},{\”name\”:\”value\”,\”-
type\”:\”double\”},{\”name\”:\”sensor_type\”,\”type\”:[\”null\”,\”stri
ng\”]},{\”name\”:\”plant\”,\”type\”:[\”null\”,\”string\”]},{\”name\”:\
”machine\”,\”type\”:[\”null\”,\”string\”]}]}”
);

Kafka
Kafka should be used as the buffer between data ingestion by NiFi and data loading by Druid.
The time series measurements that are ingested by NiFi should be serialized in a common
format and written to a Kafka measurements topic.

Measurements topic
The measurements topic holds time series measurements ingested by NiFi, but not yet
loaded by Druid. One message in the topic should represent one measurement.

https://github.com/apache/hive/blob/master/druid-handler/src/java/org/apache/hadoop/hive/druid/conf/DruidConstants.java

WHITE PAPER

11 Time Series Data Warehouse

Topic design
The number of topic partitions is an important factor in message throughput. A reasonable
initial value is one partition per 10,000 measurements per second. For example, for an
application that ingests 500,000 measurements per second, start with a topic of 50
partitions. Further tuning of the partition count may be required after initial performance
testing of the developed application, but ideally before entering production. The topic
should have a replication factor of 3 for data durability and availability in failure
scenarios.

Message serialization
The measurement messages in the topic should be serialized with Apache Avro, which is a
compact binary serialization that is well supported in the Cloudera platform. Avro allows the
schema of the messages to evolve over time without necessarily breaking compatibility with
earlier messages. The use of the Schema Registry component in Cloudera Stream
Processing can assist with managing this schema evolution, including supporting the
messages to be written without each embedding the full schema. The NiFi ingestion flow
can be configured to write messages to Kafka in Avro format, including integration with the
schema registry.
It is possible for the measurements messages to be serialized with other formats, such as
JSON; however these generally take up more disk space, are slower for Druid to parse, and
may not support schema evolution.

Data ingestion
Ingestion is the extract of data from source systems and the load of that data into the HDP 3
platform. From data warehousing terminology this is the “E” and the “L” of ETL, or ELT.
NiFi is the recommended data integration component, which is provided by Cloudera
Data Flow (CDF) for HDP 3. NiFi is very well suited to high velocity ingest of time
series data.

The source systems that time series data is ingested from can take many different forms and

• Raw TCP
• HTTP, e.g. REST
• Historians
• Upstream collectors, e.g. Azure IoT Hub
• Relational databases
• Flat files
• Custom format files

NiFi has the ability to read all of these source systems and interfaces, including extensibility
for data formats that NiFi does not currently support. Consult the NiFi documentation to find
the processors that match your source system interfaces.

NiFi should load the extracted data into the measurements topic in Kafka. Each message in
the measurement topic should represent one time series measurement. All ingested
measurements should be serialized as Avro records for the Kafka messages.

If required, NiFi can also be used to pre-process measurements before loading them into
Kafka. This can include simple transformations such as data type conversion and field
renames, or more complex transformations such as enrichment via lookups.

In some cases, the complexity of a required transformation is beyond what is expressable in
NiFi, such as a join or window function. In these cases, Cloudera recommends to use the
stream processing engine Apache Spark to run these transformations between the data
being ingested by NiFi and the data being loaded into Druid. Kafka can be used as a buffer
between these components, just as it is used in this architecture document as a buffer
between NiFi and Druid.

http://nifi.apache.org/docs/nifi-docs/html/getting-started.html#what-processors-are-available

WHITE PAPER

12 Time Series Data Warehouse

User queries
With the measurements loaded into Druid the users can immediately query them with
Hive. This can be done using hand-written SQL in the Data Analytics Studio (DAS) user
interface for HDP 3, or through third-party business intelligence tools that support JDBC
or ODBC data sources. Custom SQL can be useful for exploratory analytics, and BI tools
can be useful for live monitoring and dashboarding.

In addition to time series data warehousing, data scientists can access the same data
through the Cloudera Data Science Workbench tool. This enables distributed machine
learning algorithms to be executed over the same time series data using Spark.
This section provides some example SQL queries that users might run to ask questions of
the time series application.

Raw
In this context “raw” data refers to the individual records stored within Druid. If the
measurements have not been rolled up on ingestion, then these will be the individual
measurements.
If the measurements have been rolled up on ingestion, for example from per-second
events to the one-minute granularity, then these will be the partial aggregation results
(i.e. rollups) stored in Druid. These records are a slice of the time and dimensions fields
of the measurements. It is not guaranteed that Druid will always store one rollup record
per slice of the time and the dimensions, nor that Druid will always maintain the same
number of rollup records per slice of time and dimensions. In general, this means that is
it not particularly useful to select raw records from rollup tables, and instead queries that
aggregate by a slice of time and/or dimensions should be submitted instead.
For example, within a relative window of time, note that sometimes there are multiple
records per timestamp:

SELECT `__time`, count, value
FROM telemetry
WHERE sensor_id = 100
AND `__time` >= CURRENT_TIMESTAMP() - INTERVAL 10 MINUTES;

+----------------------------+--------+----------------------+
| __time | count | value |
+----------------------------+--------+----------------------+
2019-10-22 14:46:00.0 UTC	60	-16219.843261338903
2019-10-22 14:47:00.0 UTC	1	-6.846895856402227
2019-10-22 14:47:00.0 UTC	59	-14912.613028755055
2019-10-22 14:48:00.0 UTC	60	-17470.1292797956
2019-10-22 14:49:00.0 UTC	1	-470.02321050059106
2019-10-22 14:49:00.0 UTC	59	-19866.89021500123
2019-10-22 14:50:00.0 UTC	60	-19556.180216432906
2019-10-22 14:51:00.0 UTC	1	-299.80085607997455
2019-10-22 14:51:00.0 UTC	59	-15906.440247964943
2019-10-22 14:52:00.0 UTC	60	-14923.916427317667
2019-10-22 14:53:00.0 UTC	1	-112.41589126252131
2019-10-22 14:53:00.0 UTC	59	-17371.277289287562
2019-10-22 14:54:00.0 UTC	60	-20344.369541141623
2019-10-22 14:55:00.0 UTC	1	-586.1111970069903
2019-10-22 14:55:00.0 UTC	32	-6269.855211856371
+----------------------------+--------+----------------------+

WHITE PAPER

13 Time Series Data Warehouse

Or within a specific range of time:

SELECT `__time`, count, value
FROM telemetry
WHERE sensor_id = 100
AND `__time` BETWEEN ‘2019-10-22 14:50:00’ AND ‘2019-10-22
14:52:00’;

+----------------------------+--------+----------------------+
| __time | count | value |
+----------------------------+--------+----------------------+
2019-10-22 14:50:00.0 UTC	60	-19556.180216432906
2019-10-22 14:51:00.0 UTC	1	-299.80085607997455
2019-10-22 14:51:00.0 UTC	59	-15906.440247964943
2019-10-22 14:52:00.0 UTC	60	-14923.916427317667
+----------------------------+--------+----------------------+

Downsamples
Downsampling involves aggregating measurements to a larger time granularity so that
values can be determined for wider timespans than what is already rolled up in the table.
Within Druid these are known as ‘timeseries’ queries.

Hive provides “floor” functions to round down timestamps to the nearest granularity
timestamp, e.g. for the floor minute function, from ‘2019-01-01 12:34:56’ to ‘2019-01-
01 12:34:00’.

For example, to downsample to a per hour granularity:

 SELECT
 FLOOR_HOUR(`__time`) `__time`
 , SUM(count) count
 , SUM(value) value
FROM telemetry
WHERE sensor_id = 100
GROUP BY FLOOR_HOUR(`__time`);
+----------------------------+--------+----------------------+
| __time | count | value |
+----------------------------+--------+----------------------+
2019-10-22 14:00:00.0 UTC	894	-262296.3874278831
2019-10-22 15:00:00.0 UTC	3600	-1062112.2920872918
2019-10-22 16:00:00.0 UTC	3600	-1062137.711899869
2019-10-22 17:00:00.0 UTC	3599	-1061534.043815015
2019-10-22 18:00:00.0 UTC	1954	-577525.0118555583
+----------------------------+--------+----------------------+

Or to downsample to a per 15-minute granularity:

SELECT
 CAST(FLOOR_MINUTE(`__time`) AS TIMESTAMP) -
 INTERVAL (EXTRACT(minute FROM `__time`) % 15) MINUTES
 AS `__time`
 , SUM(count) count
 , SUM(value) value
FROM telemetry
WHERE sensor_id = 100
GROUP BY CAST(FLOOR_MINUTE(`__time`) AS TIMESTAMP) -
 INTERVAL (EXTRACT(minute FROM `__time`) % 15) MINUTES
ORDER BY `__time`;

WHITE PAPER

14 Time Series Data Warehouse

+------------------------+--------+----------------------+
| __time | count | value |
+------------------------+--------+----------------------+
2019-10-22 14:45:00.0	894	-262296.3874278831
2019-10-22 15:00:00.0	900	-265527.93449713575
2019-10-22 15:15:00.0	900	-265535.0565255714
2019-10-22 15:30:00.0	900	-265525.1983720285
2019-10-22 15:45:00.0	900	-265524.1026925563
2019-10-22 16:00:00.0	900	-265531.57272412465
2019-10-22 16:15:00.0	900	-265531.25440185587
2019-10-22 16:30:00.0	900	-265538.47855463775
2019-10-22 16:45:00.0	900	-265536.4062192506
2019-10-22 17:00:00.0	899	-264938.3456768413
2019-10-22 17:15:00.0	900	-265532.40692064306
2019-10-22 17:30:00.0	900	-265534.8937905999
2019-10-22 17:45:00.0	900	-265528.3974269307
2019-10-22 18:00:00.0	900	-265534.2945895997
2019-10-22 18:15:00.0	783	-227960.73054807374
+------------------------+--------+----------------------+

These queries can be wrapped in views to simplify user queries. Multiple views can be
created for different granularities, such as one per second, one per minute, and one per hour.

CREATE VIEW telemetry_hour AS
SELECT
 FLOOR_HOUR(`__time`) `__time`
 , sensor_id
 , SUM(count) count
 , SUM(value) value
FROM telemetry
GROUP BY FLOOR_HOUR(`__time`), sensor_id;

The view can then be queried as:

SELECT `__time`, count, value
FROM telemetry_hour
WHERE sensor_id = 100
ORDER BY `__time`;
+----------------------------+--------+----------------------+
| __time | count | value |
+----------------------------+--------+----------------------+
2019-10-22 14:00:00.0 UTC	894	-262296.3874278831
2019-10-22 15:00:00.0 UTC	3600	-1062112.2920872918
2019-10-22 16:00:00.0 UTC	3600	-1062137.711899869
2019-10-22 17:00:00.0 UTC	3599	-1061534.043815015
2019-10-22 18:00:00.0 UTC	2118	-625490.7404606077
+----------------------------+--------+----------------------+

Pivot/transpose
The above examples provide the multiple metrics per timestamp on separate records.
A pivot, otherwise known as a transpose, can be used where multiple metrics per
timestamp are required on the same record.

WHITE PAPER

15 Time Series Data Warehouse

Hive does not currently provide a pivot function, but it can be implemented with this
syntax (assuming we have a view telemetry_hour that downsamples measurements
per hour, as described in the previous section):

 SELECT
 FLOOR_HOUR(`__time`) `__time`
 , MAX(CASE WHEN sensor_type = ‘temperature’ THEN value END)
temperature
 , MAX(CASE WHEN sensor_type = ‘pressure’ THEN value END)
pressure
FROM telemetry
WHERE sensor_id IN (100, 101)
AND `__time` >= CURRENT_TIMESTAMP() - INTERVAL 4 HOURS
GROUP BY FLOOR_HOUR(`__time`)
ORDER BY FLOOR_HOUR(`__time`);
+-----------------------+-----------------------+--------------------+
| __time | temperature | pressure |
+-----------------------+-----------------------+--------------------+
2019-10-22 14:00:00.0	-14919.459924611458	1901.2905602971227
2019-10-22 15:00:00.0	-6035.789051408976	3362.989233184454
2019-10-22 16:00:00.0	-5961.867724867079	3358.183901721163
2019-10-22 17:00:00.0	-3.7921024546802755	3353.33377443314
2019-10-22 18:00:00.0	-0.22397884804610158	3322.994063408674
+-----------------------+-----------------------+--------------------+

Where a set of metrics is commonly pivoted together then a view could be created for that
pivot query:

CREATE VIEW probe_metrics AS
SELECT
 time
 , plant
 , machine
 , MAX(CASE WHEN sensor_type = ‘pressure’ THEN value END)
pressure
 , MAX(CASE WHEN sensor_type = ‘brightness’ THEN value END)
brightness
FROM downsampled_1s
GROUP BY time, plant, machine;

Users could then query for probe metrics per timestamp with:

SELECT time, pressure, brightness
FROM probe_metrics
WHERE machine = 705
AND time >= NOW() - INTERVAL 1 HOUR
ORDER BY time;

+---------------------+-------------------+--------------------+
| time | pressure | brightness |
+---------------------+-------------------+--------------------+
2019-06-03 00:48:24	46.31959579101573	-399.1159619067209
2019-06-03 00:48:25	47.17996759211917	-399.9728049675076
2019-06-03 00:48:26	47.73523223287668	-399.6272832668245
2019-06-03 00:48:28	47.92830080609275	-395.3348250960566
2019-06-03 00:48:29	47.56588908407019	-391.3973229393663

WHITE PAPER

16 Time Series Data Warehouse

2019-06-03 00:48:30	46.89793899373325	-386.2763078513929
2019-06-03 00:48:31	45.92519684787266	-379.9830358708207
2019-06-03 00:48:32	44.64874896045262	-372.5313384227952
2019-06-03 00:48:33	43.07002057534766	-363.9376006885211
2019-06-03 00:48:34	41.19077563451083	-354.2207113810819
...

Aggregations
Hive supports many common aggregate functions, however it does not always translate
these into queries on Druid in a way that reflects the intention of the user. The following
sub-sections describe how to derive the intended aggregation results.

Sums
The SUM function is understood correctly by Hive to be pushed down to Druid, and so it will
automatically generate the correct results.

For example,

SELECT SUM(value) sum
FROM telemetry
WHERE `__time` >= CURRENT_TIMESTAMP() - INTERVAL 1 DAY
AND sensor_id = 100;
+----------------------+
| sum |
+----------------------+
| -157826.08752537577 |
+----------------------+

Counts and averages
For Hive-Druid tables the Hive COUNT and AVG functions will use the count of the multiple
partial aggregation records of a single time/dimension slice, instead of using the count
column created by the count aggregation in the Druid data source. Because there are an
arbitrary number of partial aggregation records for a single time/dimension slice, it is not
meaningful to use the count of those records for query results.
Instead, to correctly derive the count and average aggregations for a Druid-backed table
the SUM function must be used on the count column.

For example, to retrieve the average value and the count of measurements of a metric over the
previous day, and to also demonstrate the unintended way to aggregate values on Druid tables:

SELECT
 SUM(value) / SUM(count) avg
 , SUM(count) count
 , AVG(value) wrong_avg
 , COUNT(*) wrong_count
FROM telemetry
WHERE `__time` >= CURRENT_TIMESTAMP() - INTERVAL 1 DAY
AND sensor_id = 100;
+---------------------+--------+----------------------+--------------+
| avg | count | wrong_avg | wrong_count |
+---------------------+--------+----------------------+--------------+
| -294.97244278095854 | 15846 | -16753.166051279815 | 279 |
+---------------------+--------+----------------------+--------------+

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-Built-inAggregateFunctions(UDAF)

WHITE PAPER

Cloudera, Inc. 395 Page Mill Road Palo Alto, CA 94306 USA cloudera.com

© 2019 Cloudera, Inc. All rights reserved. Cloudera and the Cloudera logo are trademarks or registered trademarks
of Cloudera Inc. in the USA and other countries. All other trademarks are the property of their respective companies.
Information is subject to change without notice. Time_Series_Data_Warehouse_HDP3 _101_Dec 17, 2019

Minimums and maximums
By default, a Hive-Druid table will not maintain the minimum or maximum values within each
rollup. This means that when using the Hive MIN or MAX function on a measure the result will be
the minimum and maximum of the summed measures for each slice of time/dimensions, which
generally is not what is intended when selecting a minimum or maximum.

Instead, to correct derive the minimum and maximum of a measure for a Druid-backed table the
Druid data source must be created with minimum and maximum aggregators. These are included
in the same way as the count aggregator. See the Druid documentation for more information on
these aggregators.

With the minimum and maximum aggregators included in the Hive-Druid table the minimums
and maximums can be derived by using the Hive MIN and MAX function over the min and max
columns created by the aggregators.

For example, where the minimum and maximum aggregators are named value_min and
value_max:

SELECT
 MIN(value_min) min
 , MAX(value_max) max
FROM telemetry
WHERE `__time` >= CURRENT_TIMESTAMP() - INTERVAL 1 DAY
AND sensor_id = 100;
+---------------------+---------------------+
| min | max |
+---------------------+---------------------+
| -699.9823943886912 | 1023.9863627726648 |
+---------------------+---------------------+

About Cloudera
At Cloudera, we believe that data can
make what is impossible today, possible
tomorrow. We empower people to
transform complex data into clear and
actionable insights. Cloudera delivers
an enterprise data cloud for any data,
anywhere, from the Edge to AI. Powered
by the relentless innovation of the open
source community, Cloudera advances
digital transformation for the world’s
largest enterprises.

Learn more at cloudera.com

Connect with Cloudera
About Cloudera:
cloudera.com/more/about.html

Read our VISION blog:
vision.cloudera.com
and Engineering blog:
blog.cloudera.com

Follow us on Twitter:
twitter.com/cloudera

Visit us on Facebook:
 facebook.com/cloudera

See us on YouTube:
youtube.com/user/clouderahadoop

Join the Cloudera Community:
community.cloudera.com

Read about our customers’ successes:
cloudera.com/more/customers.html

http://cloudera.com
http://cloudera.com
https://druid.apache.org/docs/latest/querying/aggregations#min-max-aggregators

