
WHITE PAPER

TIME SERIES
DATA WAREHOUSE
A reference architecture utilizing a
modern data warehouse, based on
Cloudera 6

TIME
SERIES

DATA
ANALYSIS

WHITE PAPER

2 Time Series Data Warehouse

Time series is different from traditional
statistical analysis

HIGH-DIMENSIONAL
100’S OF PARAMETERS
Oil yield with temperature, pressure.
Medical, with heart rate, blood
pressure. Network quality with weather,
traffic, events.

NOT A NORMAL DISTRIBUTION
COMPLICATED. MULTIPLE PROCESSORS
Smart meters weekday vs. weekend.
Complex manufacturing processes.

NON-STATIONARY
SLIDING WINDOWS OF DATA
Continuously shifting

DESIRE TO DETECT PATTERN
Real time data vs. historical data. Input
keeps changing at rapid pace.

Introduction
Cloudera’s data platform is commonly used by Fortune 2000 companies all over the world,
for a variety of large scale ETL/data curation, ad-hoc reporting, ML model training, and other
data-driven, mission critical applications. In this document, we will share how these
enterprises utilize the same platform and data warehousing technology for high scale, time
series applications.

A time series data warehouse provides the ability to report and analyze across data
generated by a large number of data sources that generate data at regular intervals, such as
sensors, devices, IoT entities, and financial markets. This data can also be queried, in real
time, on the Cloudera platform in conjunction with other data sources from the organization
and historical data, or to perform advanced analytics workloads such as statistical modeling
and machine learning.

Predictive maintenance
Large manufacturers collect sensor data from each manufacturing robot at each factory
floor, to correlate patterns and understand what leads up to specific events, that later causes
downtime due to need of maintenance. These organizations are looking to optimize
processes so that spare parts can be available in a timely manner, to avoid downtime.

Capacity planning and optimization
Large utilities and telecom organizations, as well as broadcasting and supply-chain
dependent organizations, use time series data warehousing to better plan / replan
manufacturing pipelines and supply chains, to optimize / plan for peak hours (to prevent
downtimes), or to do better pricing.

Quality optimization
A frequent add-on use case to the ones above is optimization of quality and quality
processes, by collecting samples from tests and other sensors. The aim is to prevent the
significant costs or fines related to having to pull products later in the production pipeline
(or, in the worst-case scenario, off the market), and to avoid liability and penalty costs.

Yield optimization
In large pharmaceuticals and chemical manufacturing, time series data analysis at large
scale is done to optimize yield.

Modern Data Warehousing
REQUIRES ANALYSIS OF TIME SERIES DATA

MEDICAL DATA

OIL YIELDS

SMART METERS

• Automated maintenance and continuous plant uptime
•Targeted and personalized customer service and promotion
•Automated network utility and cost optimization
•Real-time fraud prevention and threat detection
•Quality and yield optimization
•Continuous operations dashboards

WHITE PAPER

3 Time Series Data Warehouse

Table of Contents

Introduction 	 2

Requirements 4

High-level architecture	 4

Data model	 5

Kudu		 6

Measurement table	 6

Data types	 6

Primary key	 7

Partitioning	 7

Example	 8

Metrics table	 8

Hardware considerations	 9

Scalability limits	 9

Kafka		 9

Measurements topic	 10

Topic design	 10

Message serialization	 10

		 Parquet	 10

Data ingestion	 11

Data processing	 11

	 Enrichment	 12

Metric registration	 13

	 Aggregation	 13

User queries	 13

Raw		 13

	 Downsamples	 14

	 Pivot/transpose	 16

Latest values	 17

	 Aggregations	 17

	 Interpolation 18

WHITE PAPER

4 Time Series Data Warehouse

Requirements
The architecture outlined in this document describes a reference solution for time series use
cases on the Cloudera 6 platform (CDH 6). The solution addresses these high- level time
series requirements:

• Extraction of time series measurements from data sources. A measurement is
generally a single value from a single source (e.g., a sensor) at a single timestamp

• Data sources span a wide variety of interfaces, e.g., files, message queues, IoT
hubs, REST

• Data sources can span a wide variety of data serializations, e.g. CSV, JSON, XML
• The total of all data sources of an application can be a very high rate of measurement,

e.g., millions of measurements per second
• Enrichment of measurements with additional information, e.g., the device that a sensor

is attached to. This allows users to query the measurements in more meaningful ways
than only what was provided by the data source

• Querying of the measurements by application users
• Measurements should be available across a deep history, from the very latest to those

far in the past
• Queries over measurements should execute quickly, enabling an interactive and

exploratory user mindset that encourages driving the most value out of the data
• Queries over measurements should take advantage of existing tooling, such as

standard business intelligence software
• Measurements should quickly become visible for user queries, e.g. within 30 seconds

since the measurement took place
• Advanced querying of the measurements with statistics and machine learning libraries,

and widely used languages, such as Python and R
• Automatic handling of updates. These could be intentional, such as data corrections, or

unintentional, such as duplicates
• Ability to deploy the application either on premises or on a public cloud
• Data secured and governed, including authorization, authentication, auditing,

and encryption

High-level architecture
The CDH 6 platform provides a variety of open source components that can be configured
together to build applications. This reference architecture uses multiple CDH 6 components
to solve the time series requirements that were described in the previous section:

• Apache NiFi, for data ingestion
• Apache Kafka, for storage of pre-processed measurements
• Apache Spark, for data pre-processing, if required
• Apache Kudu, for storage of recent measurements
• Apache Parquet, for storage of historical measurements
• Apache Impala, for user query of all measurement

WHITE PAPER

5 Time Series Data Warehouse

This architecture is capable of scaling to:

• Ingestion and processing of millions of measurements per second
• Latency in the seconds from real world measurement to user query
• Dozens of concurrent user queries
• Petabytes of available measurements history

The following sections detail four major concerns of the architecture:

• The data model, which describes how the data is stored at rest
• The ingestion flow, which describes how the data is extracted from source systems and

loaded into the cluster
•	 The processing job, which describes how the data is transformed prior to user query
• The user queries, which describes how users can ask questions of the data

Note that the intention of this document is to describe application architecture decisions
that are specific to time series use cases and does not intend to cover the full breadth of
CDH application architectures. For deeper consultation on CDH application architectures
please contact your Cloudera account team or send an email to sales@cloudera.com.

Reference application
This reference architecture is accompanied by a reference application, available from
Cloudera, that implements and demonstrates the functionality described by this
architecture. This reference application can be considered an out-of-the-box proof of
concept of many of the topics described in this document. It is advisable to start a CDH 6
time series proof of concept with this reference application and make required
modifications from that point, instead of starting a new application from scratch.

NiFi/CDF

Kafka

Kudu Impala

CDSW Data
Scientists

SQL
Users

Parquet on
HDFS, S3, etc

Spark
Streaming

Spark
StreamingData

Source 1

Data
Source 2

Data
Source N

mailto:sales%40cloudera.com.?subject=

WHITE PAPER

6 Time Series Data Warehouse

Kudu
Kudu is a database in the CDH 6 platform that is suitable for high velocity ingest, high volume
scans, and fast key lookups. These characteristics make it ideal for landing and serving new
measurements to user queries. If required, as the data in Kudu ages it can be rolled off to
Parquet files on HDFS or object stores to take advantage of cheaper storage and larger
capacity scalability.

This section describes some Kudu tables that would typically be found in a time series data
warehouse. Not all of these may be required for your application, and likewise some may be
required but with variations to meet specific requirements not captured by this document.

Measurement table
This table stores the processed measurements as one record per measurement.
The columns of a Kudu measurement record generally consist of:

•	 The identifier of the metric that is being measured over time, such as the
identifier of an individual sensor. For this reference architecture we will name this
metric_id

•	 The timestamp of the measurement. For this reference architecture we will name
this time

•	 The value of the metric at the timestamp. For this reference architecture we will name
this value

•	 Optionally, one or more additional metadata fields about the measurement or about
the metric

The names of the columns can be customized for each individual application. The length of
the names will not impact storage costs or query performance. Where multiple metrics are
measured together at the same timestamp, and provided on the same measurement
message to the application, then the multiple values could be modeled as individual value
columns on the same Kudu record. If the multiple metrics are at different timestamps, or
provided on separate measurement messages, then it is typically more efficient to store
them as separate records in the Kudu table.

	 Data types
•	 The metric ID column should use the INT data type. This will allow up to approximately

four billion unique metrics.

•	 The timestamp column should use the TIMESTAMP data type. This will allow the user
queries to make best use of the available time-related functions and syntax.

•	 The value column should generally use the FLOAT or DOUBLE data type, depending on
the range and precision required. FLOAT will use at most 4 bytes, and DOUBLE will use
at most eight bytes, however Kudu column encoding may considerably reduce the
average size of the value.

•	 Note that a floating point data type such as FLOAT and DOUBLE cannot store all
numbers in its range at full precision. This is generally acceptable for physical sensor
readings. For time series applications that require exact values, such as financial
market prices, use the DECIMAL data type.

•	 If there are multiple possible data types for a measurement’s value, then there should
be separate value fields for each possible data type. Only one of these value fields
should be non-null for each measurement record. Optionally, a column can be added
that indicates which value column to use for that measurement.

WHITE PAPER

7 Time Series Data Warehouse

•	 Metadata fields should use numeric or boolean types where possible. Long strings that
are mostly unique should generally be avoided as they will greatly increase the size of
the table on disk.

Primary key
The primary key of the Kudu measurement table should generally be two fields: time
and metric_id.

It is important that the time field is the first column of the primary key to ensure
scalability of ingestion as the application accumulates a large history of measurements.
Kudu stores records on disk in primary key order, and because new measurements tend
to be higher in timestamp value than almost all existing measurements in the table, new
measurements tend to be written to the very end of the table’s partitions, which
minimizes the need for Kudu to run expensive compactions for new data. This also has
the benefit that user queries that select short time slices will only scan table records
within that time slice.

Partitioning
The Kudu measurement table should be partitioned with a combination of hash and
range partitioning. This helps ensure that the scale of the cluster is utilized for large
workloads, and without over-allocating that scale for small workloads. For more
information on Kudu partitioning design, see the Kudu documentation.
The two values that need to be specified for hash-range partitioning is the number of
hash buckets and the width of a range partition.

The number of hash buckets will determine the maximum level of parallelism for scans
and ingest within a single range. It is important to model this parallelism for a single
range because generally the majority of queries will only scan the most recent range.

A good measure for the number of hash buckets for very large tables, such as time series
measurements, is to set the number of hash buckets as a small multiple of the number of
worker nodes in the Kudu cluster. This will provide parallelism across all worker nodes,
and a small level of parallelism within each worker node to make use of the multiple cores
in each node.

For example, in a 20-worker-node cluster, where a measurement table will occasionally
be used, having 40 hash buckets would be sensible. In another example, in a 50-worker-
node cluster, where a measurement table is used very often, having 250 buckets would
be sensible.

If the cluster is planned to grow over time, it is a good idea to consider the number of
worker nodes for this calculation as the number at some point in the future, such as a
year or two ahead. This is important because the number of hash partitions cannot be
changed after the table has been created.

The second value that then needs to be determined is the width of each range partition.
The width is not strictly required to be a round value such as one day or one month, but
doing this will make it simpler to offload data to Parquet. The width of each range
partition can also be different, but again it will be simpler to keep them the same unless
there is a significant change in the volume of data arriving into the table.

A good measure for the width of a range partition for very large tables, such as time
series measurements, is to set the width of the range partition such that the size of the
range divided by the number of hash buckets is roughly 4GB. This will create tablets on
disk of that size, and in Cloudera’s experience that rough size is a good balance between
the overhead of having many tablets and the performance of scanning larger tablets.

https://kudu.apache.org/docs/schema_design.html#partitioning

WHITE PAPER

8 Time Series Data Warehouse

For example, where the hash bucket calculation above yielded 120 buckets, and where
one day of measurements in the Kudu table consumes about 500GB on disk, then the
width of the range partition should be:

range-width = #buckets / size-per-day / 4GB days

 = 120 / 500GB / 4GB days
 = 120 / 125 days
 = approx. 1 day

The above calculation indicates that the range width should be one day.

Note that if the cluster is small and the velocity of arriving data is high, the calculated size
of a range partition may be very small. This indicates that the scaling limits of the Kudu
cluster will be quickly reached, and so arriving data will need to be rapidly aged off to
Parquet files. It also likely indicates that the query performance will not be suitable and
that a larger cluster should be provisioned instead. For example, where the hash bucket
calculation above yielded 10 buckets, and where one day of measurements in the Kudu
table consumes about 2TB on disk, then the width of the range partition would be:

range-width = #buckets / size-per-day / 4GB days
 = 10 / 2TB / 4GB days
 = 10 / 500 days
 = 0.02 days
 = approx. 0.5 hours

Example
As an example, this Impala statement will create a Kudu measurements table:
CREATE TABLE measurements (
 time TIMESTAMP,
 metric_id INT,
 value DOUBLE,
 plant INT,
 machine INT,
 sensor_type STRING,
 PRIMARY KEY (time, metric_id)
)
PARTITION BY
HASH(metric_id) PARTITIONS 60
RANGE(time)
(
 PARTITION '2019-06-20' <= VALUES < '2019-06-21',
 PARTITION '2019-06-21' <= VALUES < '2019-06-22',
 PARTITION '2019-06-22' <= VALUES < '2019-06-23'
)
STORED AS KUDU;

Metrics table
This table stores information about the metrics as one record per metric. This table can be
accessed by the Spark processing job to enrich the ingested measurements with
additional fields.

The primary key should generally be the metric_id column.

The remaining columns of the metrics table should then contain information about the
metric. Commonly these would form one or more hierarchies of fields about the metric. For
example, the machine that a sensor is on, and the plant that the machine is in. These
hierarchy levels provide opportunities for application users to query measurements at
varying levels of aggregation.

WHITE PAPER

9 Time Series Data Warehouse

If the metrics table will never require more than 4GB on disk the table should not need to be
partitioned. If the metrics table will grow to more than 4GB on disk the table should be hash
partitioned with the number of hash partitions set to the target size divided by 4GB. For
example, if it is expected that the metrics table will use up to 20GB on disk, it should be hash
partitioned with five hash partitions. The size of a Kudu table on disk can be found in
Cloudera Manager under the Charts Library of the Kudu service.

For example,

CREATE TABLE metrics (
 metric_id INT PRIMARY KEY,
 plant INT,
 machine INT,
 sensor_type STRING
)
PARTITION BY HASH PARTITIONS 10
STORED AS KUDU;

Hardware considerations
As general Kudu best practice the write-ahead-log (WAL) directory of a Kudu tablet server
should be on a dedicated disk.

For bare metal clusters it is recommended to use SSD disks for the tablet server WAL and
spinning hard disks for the master WAL and the master and tablet server data directories.
Tablet server data directories can be colocated with HDFS data directories.

For AWS EBS it is recommended to use the “io1” volume type for the tablet server WAL, and
the “st1” volume type for the master WAL and the master and tablet server data directories.

The Kudu scaling guide should be used to allocate memory, threads, and other
configurations.

Scalability limits
While Kudu supports high velocity ingest, high volume scans, and fast key lookups, it does
have limits in storage capacity. As these limits are approached older data should be aged off
to Parquet files on HDFS or object stores so that the limits are not breached. This is described
further in the next section.

Review the CDH Kudu documentation to find the limits for your CDH version. As of CDH 6.2
the primary scalability limits per cluster are:

•	 Maximum 100 tablet servers
•	 Maximum 2000 tablets per tablet server
•	 Maximum 8TB per tablet server

If the design or volumes of your time series application would require going beyond the
documented limits above, please contact your Cloudera account team, or the Kudu mailing
lists, for advice on how to safely expand beyond these limits.

Kafka
If processing of measurements is required before data is visible to users, Kafka should be
used as the buffer between data ingestion by NiFi and data processing by Spark. The time
series measurements that are ingested by NiFi should be serialized in a common format and
written to the Kafka measurements topic. The Spark data processing job then reads the
standardized measurements from the topic. In this way, Kafka acts as an abstraction of the
upstream data sources and serializations so that the business logic (e.g. enrichment) can be
implemented independently of those concerns.

https://kudu.apache.org/docs/scaling_guide.html
https://www.cloudera.com/documentation/enterprise/latest/topics/kudu_limitations.html
https://kudu.apache.org/community.html
https://kudu.apache.org/community.html

WHITE PAPER

10 Time Series Data Warehouse

Kafka can also be used for providing messages downstream to other systems, if required.
These requirements are specific to each application. For example, a system external to
CDH may require notification when a sensor has been above a certain value for more than
an hour. This notification could be a message on a Kafka topic that that external system
subscribes to.

Measurement topic
The measurements topic holds all time series measurements ingested by NiFi, but not yet
processed by Spark. One message in the topic should represent one measurement.

Topic design
The number of topic partitions is an important factor in message throughput. A reasonable
initial value is one partition per 10,000 measurements per second. For example, for an
application that ingests 500,000 measurements per second, start with a topic of 50
partitions. Further tuning of the partition count may be required after initial performance
testing of the developed application, but ideally before entering production.

The topic should have a replication factor of 3 for data durability and availability in
failure scenarios.

Message serialization
The measurement messages in the topic should be serialized with Apache Avro, which is a
compact binary serialization that is well supported in the Cloudera platform. Avro allows the
schema of the messages to evolve over time without necessarily breaking compatibility with
earlier messages. The use of the Schema Registry component in Cloudera Stream
Processing can assist with managing this schema evolution, including supporting the
messages to be written without each embedding the full schema. The NiFi ingestion flow
can be configured to write messages to Kafka in Avro format, including integration with the
schema registry.

It is possible for the measurements messages to be serialized with other formats, such as
JSON; however these may take up more disk space, may be slower for downstream
processing to parse, and may not support schema evolution.

Parquet
As data ages in the Kudu measurement table it can be rolled off to Parquet files so that
Kudu’s advantages are dedicated to storing the more recent data. The offloaded Parquet
files can be stored on HDFS, or object storage such as S3 or ADLS.

Note that this offload is not always mandatory for a successful time series application. If the
measurement data will remain comfortably under the scalability limits of the Kudu cluster
then there should typically be less of a hard requirement to introduce the complexity of
rolling off data to Parquet files. However, the cost differences of object storage for Parquet
(e.g. S3) vs file system storage for Kudu (e.g. ext4 on EBS) may be a factor even when the
scalability limits are not a concern.

The two locations for the overall data set can be made transparent to users by reading from
both tables in an Impala view. Where a user query spans a range of time that exists in only
one storage layer then only that storage layer will be scanned.

For more information on rolling data off to Parquet files, and to maintain the table partitions
and view, see the Cloudera blog article on the topic.

https://blog.cloudera.com/transparent-hierarchical-storage-management-with-apache-kudu-and-impala/

WHITE PAPER

11 Time Series Data Warehouse

Data ingestion
Ingestion is the extract of data from source systems and the load of that data into the CDH 6
platform. From data warehousing terminology this is the “E” and the “L” of ETL.

NiFi is the recommended data integration component, which is provided by Cloudera Data
Flow (CDF) for CDH 6. NiFi is very well suited to high velocity ingest of time series data.

The source systems that time series data is ingested from can take many different forms and
interfaces. Some of these include:

•	 Raw TCP
•	 HTTP, e.g. REST
•	 Historians
•	 Upstream collectors, e.g. Azure IoT Hub
•	 Relational databases
•	 Flat files
•	 Custom format files

NiFi has the ability to read all of these source systems and interfaces, including extensibility
for data formats that NiFi does not currently support. Consult the NiFi documentation to find
the processors that match your source system interfaces.

If processing of the measurements is required before data is visible to users, NiFi should load
the extracted data into the measurement topic in Kafka. Each message in the measurement
topic should represent one time series measurement. All ingested measurements should be
serialized as Avro records for the Kafka messages.

If this pre-processing is not required, NiFi should write the measurements directly into the
Kudu measurements table.

Data processing
In this architecture, the primary processing job reads the ingested measurements from
Kafka, transforms the measurements according to the required business rules of the
application, and writes the processed results to Kudu.

If no transformations are required prior to user queries the NiFi flow should write the
measurements directly to the Kudu measurements table.

The transformations required for data processing will vary for each application. A decision
needs to be made for each proposed transformation as to whether to calculate it once
up front in data processing jobs, or to have it recalculated in user queries each time their
results are requested. There are trade-offs to either approach, but generally transformations
should be calculated up front in data processing jobs if they are commonly requested in
user queries, and they are slow to execute, and their results do not take up a large amount of
additional disk space.

Spark is the recommended component for time series data processing on the CDH 6
platform. Spark can run as a continuous loop of “micro-batches” that are typically a few
seconds to one minute in duration. In this architecture each micro-batch will retrieve the
latest data from Kafka, transform that data as required, and then write the results to Kudu
tables. The data that is written to Kudu is then immediately visible to user queries.

http://nifi.apache.org/docs/nifi-docs/html/getting-started.html#what-processors-are-available

WHITE PAPER

12 Time Series Data Warehouse

For Spark Streaming time series measurement pipelines it is recommended to set these
Spark configurations:

CONFIGURATION VALUE NOTES
spark.

dynamicAllocation.

enabled

false Dynamic allocation of executors is not
supported in Spark Streaming mode

spark.streaming.

backpressure.enabled

true Backpressure sizes micro-batches to
attempt to finish within the defined
duration. Without this the micro-batches
may exceed their duration when there are
volume spikes

spark.streaming.

kafka.

maxRatePerPartition

max #
records per
Kafka
partition
per second

This avoids initial micro-batches becoming
too large after returning from downtime

spark.locality.wait 1ms Improves streaming task scheduling so that
timing issues do not cause all tasks of a
micro-batch to be run on a single node

spark.speculation true Improves resiliency when a node is slow or
failing. Is suitable for this application
because the writes are idempotent, and will
not fail on double writes of the same data

To create a processing pipeline directly against Spark requires developing an application
that calls the various Spark APIs. For stream processing it is recommended to use either the
Scala or Java Spark APIs. The approach of developing against the Spark API provides the
most flexibility for application design but requires a solid familiarity with the Spark internals
to quickly develop features.

An alternative option is to use the Envelope framework to create the processing pipeline
mostly or entirely using configuration. Envelope is an open source data processing
abstraction of Spark. Envelope is provided by Cloudera but is not currently included in the
supported CDH 6 platform. The reference application that accompanies this reference
architecture has its processing pipeline built on Envelope.

The following subsections describe some of the transformations that may be required from
the processing pipeline. The transformations that each time series application requires will
vary considerably. For examples of how this business logic may be implemented, see the
reference application.

Enrichment
A good example of a transformation that often makes sense to calculate up front in data
processing jobs is enrichment of the measurements with commonly required metadata
fields. This will avoid adding a join to the user query to access those fields and allows more
efficient filtering by pushing filters down into Kudu.

https://github.com/cloudera-labs/envelope

WHITE PAPER

13 Time Series Data Warehouse

For example, in a financial markets time series use case the pricing measurements may
contain the stock symbol. Enrichment could then use that symbol to look up and add related
fields such as the company name or the exchange that the equity trades on.

The Spark processing job should use the Spark-Kafka integration to read the
measurements from Kafka, join them to the Kudu metrics table to append the
additional fields for enrichment, and write the enriched measurements to the Kudu
measurements table.

Metric registration
It may be required for the Spark processing job to detect when measurements contain
metric identifiers that are not yet present in the metrics table, and add new placeholder
entries to the metrics table until they can be later fully populated.

Aggregation
It may be required to pre-aggregate results for improved performance of user queries. This is
most likely to be required if user queries tend to span a long range of time, which would
require a large amount of input data to calculate results that may be too slow to recalculate
with each user query.
These aggregation results should be written to a separate Kudu table. The same primary key
and partitioning logic applies to an aggregation table as the original measurements table.
While this aggregation can in theory be built into the Spark processing job that reads from
Kafka and writes to Kudu, recalculating aggregations every few seconds can either heavily
reduce processing performance or require significantly more cluster resources. Instead, it is
typically more efficient to develop a separate batch Spark job that recalculates aggregates
for the period of time since the previous batch job. This batch job would be scheduled to run
periodically, for example every 10 minutes.

User queries
With the processed measurements loaded into Kudu the users can immediately query them
with Impala. This can be done using hand-written SQL in the Hue user interface for CDH 6, or
through almost any third-party business intelligence tool that supports JDBC or ODBC data
sources. Custom SQL can be useful for exploratory analytics, and BI tools can be useful for
live monitoring and dashboarding.

In addition to time series data warehousing, data scientists can access the same data
through the Cloudera Data Science Workbench tool. This enables distributed machine
learning algorithms to be executed over the time series data using Spark.

This section provides some example SQL queries that users might run to ask questions of the
time series application. These could be submitted manually through Hue, or an equivalent
submitted by a BI tool.

Raw
A typical query in a time series data warehouse would be to retrieve all values for a single
metric within a relative window of time:

SELECT time, value
FROM measurements

WHERE metric_id = 1000 AND time >= NOW() - INTERVAL 1 HOUR
ORDER BY time;
+-------------------------------+--------------------+
| time | value |
+-------------------------------+--------------------+
| 2019-06-03 00:48:24.964000000 | -665.2692997894557 |

WHITE PAPER

14 Time Series Data Warehouse

2019-06-03 00:48:26.987000000	-687.818101900486
2019-06-03 00:48:30.020000000	-698.1934639523939
2019-06-03 00:48:32.043000000	-685.8743759190486
2019-06-03 00:48:34.067000000	-662.0600881819529

Or within a specific range of time:

SELECT time, value
FROM measurements
WHERE metric_id = 1000 AND time BETWEEN '2019-06-03 01:00:00'
AND '2019-06-03 01:01:00'
ORDER BY time;
+-------------------------------+--------------------+
| time | value |
+-------------------------------+--------------------+
2019-06-03 01:00:00.887000000	959.4854494673297
2019-06-03 01:00:02.913000000	941.3869754231239
2019-06-03 01:00:04.938000000	911.9405173709874
...	
2019-06-03 01:00:54.502000000	-685.8743756099201
2019-06-03 01:00:56.526000000	-662.0600839755724
2019-06-03 01:00:58.550000000	-627.084895326232
+-------------------------------+--------------------+

Downsamples
A common challenge when working with raw measurements is that timestamps are not
exactly aligned to time boundaries, even when they are being generated at a regular interval.
The previous example shows this – they are all generated roughly every two seconds, but the
millisecond component of the timestamps is more or less uncorrelated from one
measurement to the next.

This makes it difficult to retrieve values for a particular point in time:

SELECT time, sensor_type, value
FROM measurements
WHERE metric_id IN (1002, 1005) AND time = '2019-06-03
01:00:56';
[no results]

While it may not be possible to deduce the exact value of a metric at a timestamp that
has not reported a measurement, an estimated value for the timestamp can be
calculated by downsampling the raw metrics so that the metrics are aggregated per
interval.

For example, to downsample to the next second down, using an average of the values within
a second interval:

SELECT
 DATE_TRUNC('second', time) AS time
 , sensor_type
 , AVG(value) AS value
FROM measurements
WHERE metric_id IN (1002, 1005)
AND time >= '2019-06-03 01:00:56' AND time < '2019-06-03
01:00:57'
GROUP BY 1, 2 ORDER BY 1, 2;
+---------------------+-------------+--------------------+
| time | sensor_type | value |

WHITE PAPER

15 Time Series Data Warehouse

+---------------------+-------------+--------------------+
| 2019-06-03 01:00:56 | depth | -185.2137726433043 |
| 2019-06-03 01:00:56 | speed | 466.9444886563384 |
+---------------------+-------------+--------------------+

Similarly, to downsample to the next five-second interval down:

SELECT
 DATE_TRUNC('second', time) - INTERVAL (EXTRACT(time,
'second') % 5) SECONDS AS time
 , sensor_type
 , AVG(value) AS value
FROM measurements
WHERE metric_id IN (1002, 1005)
AND time >= '2019-06-03 01:00:50' AND time < '2019-06-03
01:01:10'
GROUP BY 1, 2 ORDER BY 1, 2;
+---------------------+-------------+--------------------+
| time | sensor_type | value |
+---------------------+-------------+--------------------+
2019-06-03 01:00:50	depth	-212.2521216402649
2019-06-03 01:00:50	speed	461.1362196282832
2019-06-03 01:00:55	depth	-181.3314399444706
2019-06-03 01:00:55	speed	468.0732078473125
2019-06-03 01:01:00	depth	-170.9435884955582
2019-06-03 01:01:00	speed	472.8436200197602
2019-06-03 01:01:05	depth	-183.1460075965676
2019-06-03 01:01:05	speed	475.4202629257637
+---------------------+-------------+--------------------+

These queries can be wrapped in views to simplify user queries. Multiple views can be
created for different granularities, such as one per second, one per minute, and one per
hour.

For example, with a view created for downsampling as an average per second:

CREATE VIEW downsampled_1s AS
SELECT
 DATE_TRUNC('second', time) AS time
 , metric_id
 , plant
 , machine
 , sensor_type
 , AVG(value) AS value
FROM measurements
GROUP BY 1, 2, 3, 4, 5;

The view can then be queried as:

SELECT time, sensor_type, value
FROM downsampled_1s
WHERE metric_id IN (1002, 1005)
AND time = '2019-06-03 01:00:56'
ORDER BY time, sensor_type;
+---------------------+-------------+--------------------+
| time | sensor_type | value |
+---------------------+-------------+--------------------+
| 2019-06-03 01:00:56 | depth | -185.2137726433043 |

WHITE PAPER

16 Time Series Data Warehouse

| 2019-06-03 01:00:56 | speed | 466.9444886563384 |
+---------------------+-------------+--------------------+

Pivot/transpose
The above examples provide the multiple metrics per timestamp on separate records. A
pivot, otherwise known as a transpose, can be used where multiple metrics per timestamp
are required on the same record.

Impala does not currently provide a pivot function, but it can be implemented with this
syntax (assuming we have a view downsampled_1s that downsamples measurements per
second, as described in the previous section):

SELECT
 time
 , MAX(CASE WHEN sensor_type = 'pressure' THEN value END)
pressure
 , MAX(CASE WHEN sensor_type = 'brightness' THEN value END)
brightness
FROM downsampled_1s
WHERE machine = 705 AND time >= NOW() - INTERVAL 1 HOUR
GROUP BY time
ORDER BY time;
+---------------------+-------------------+--------------------+
| time | pressure | brightness |
+---------------------+-------------------+--------------------+
2019-06-03 00:48:24	46.31959579101573	-399.1159619067209
2019-06-03 00:48:25	47.17996759211917	-399.9728049675076
2019-06-03 00:48:26	47.73523223287668	-399.6272832668245
2019-06-03 00:48:28	47.92830080609275	-395.3348250960566
2019-06-03 00:48:29	47.56588908407019	-391.3973229393663
...

Where a set of metrics is commonly pivoted together then a view could be created for that
pivot query:

CREATE VIEW probe_metrics AS
SELECT
 time
 , plant
 , machine
 , MAX(CASE WHEN sensor_type = 'pressure' THEN value END)
pressure
 , MAX(CASE WHEN sensor_type = 'brightness' THEN value END)
brightness
FROM downsampled_1s
GROUP BY time, plant, machine;

Users could then query for probe metrics per timestamp with:

SELECT time, pressure, brightness
FROM probe_metrics
WHERE machine = 705
AND time >= NOW() - INTERVAL 1 HOUR
ORDER BY time;
+---------------------+-------------------+--------------------+
| time | pressure | brightness |
+---------------------+-------------------+--------------------+

WHITE PAPER

17 Time Series Data Warehouse

2019-06-03 00:48:24	46.31959579101573	-399.1159619067209
2019-06-03 00:48:25	47.17996759211917	-399.9728049675076
2019-06-03 00:48:26	47.73523223287668	-399.6272832668245
2019-06-03 00:48:28	47.92830080609275	-395.3348250960566
2019-06-03 00:48:29	47.56588908407019	-391.3973229393663
2019-06-03 00:48:30	46.89793899373325	-386.2763078513929
2019-06-03 00:48:31	45.92519684787266	-379.9830358708207
2019-06-03 00:48:32	44.64874896045262	-372.5313384227952
2019-06-03 00:48:33	43.07002057534766	-363.9376006885211
2019-06-03 00:48:34	41.19077563451083	-354.2207113810819

Latest values
To retrieve the latest value for each metric it is important to restrict how far back to look for
each metric, otherwise the query may be slow as it looks for metrics that have not reported
measurements in a long time.

For example, to create a view that provides the latest values for metrics that have provided
measurements for the previous five minutes:

CREATE VIEW latest AS
SELECT metric_id, machine, plant, time, value
FROM (
 SELECT metric_id, machine, plant, time, value,
 ROW_NUMBER() OVER (PARTITION BY metric_id ORDER BY time
DESC) = 1 AS is_latest
 FROM measurements
 WHERE time >= NOW() - INTERVAL 5 MINUTES
) x
WHERE is_latest = true;

Users can then select the latest values for specific tags like:

SELECT metric_id, time, value
FROM latest
WHERE machine = 11340;

Aggregations
Impala supports many common aggregate functions. These can be used on the raw
measurements table, or an aggregated measurements table if that is being maintained by
the time series application. For example, to retrieve the average, minimum, maximum, and
approximate median values of a metric over the previous day:

SELECT
 metric_id
 , AVG(value) avg_value
 , MIN(value) min_value
 , MAX(value) max_value
 , APPX_MEDIAN(value) appx_median_value
FROM measurements
WHERE time >= NOW() - INTERVAL 1 DAY
GROUP BY metric_id;

https://www.cloudera.com/documentation/enterprise/latest/topics/impala_aggregate_functions.html

WHITE PAPER

Cloudera, Inc.  395 Page Mill Road  Palo Alto, CA 94306  USA  cloudera.com

© 2019 Cloudera, Inc. All rights reserved. Cloudera and the Cloudera logo are trademarks or registered trademarks
of Cloudera Inc. in the USA and other countries. All other trademarks are the property of their respective companies.
Information is subject to change without notice.  Time_Series_Data_Warehouse_Cloudera_CDH6 _101_Dec 23, 2019

About Cloudera
At Cloudera, we believe that data can
make what is impossible today, possible
tomorrow. We empower people to
transform complex data into clear and
actionable insights. Cloudera delivers
an enterprise data cloud for any data,
anywhere, from the Edge to AI. Powered
by the relentless innovation of the open
source community, Cloudera advances
digital transformation for the world’s
largest enterprises.

Learn more at  cloudera.com

Connect with Cloudera
About Cloudera:
cloudera.com/more/about.html

Read our VISION blog:
vision.cloudera.com
and Engineering blog:
blog.cloudera.com

Follow us on Twitter:
twitter.com/cloudera

Visit us on Facebook:
 facebook.com/cloudera

See us on YouTube:
youtube.com/user/clouderahadoop

Join the Cloudera Community:
community.cloudera.com

Read about our customers’ successes:
cloudera.com/more/customers.html

Interpolation
Interpolation is a transformation that provides values for timestamps that were not
directly measured. For example, if two consecutive measurements were spaced five
seconds apart, interpolation provides values for the four individual seconds between
them. In some cases, these values are exact, such as carrying forward financial market
prices, and in other cases these values are estimated, such as what would have been
the readings from a physical sensor.

Impala does not currently provide interpolation functionality, however Cloudera Data
Science Workbench (CDSW) for the CDH 6 platform can be used as an interactive Spark
interface. Spark provides a flexible API for scalable data transformations. Interpolation
is included in various open source time series libraries for Spark, such as Flint.

http://cloudera.com
http://cloudera.com
http://cloudera.com
https://github.com/twosigma/flint

